14 svar
314 visningar
Slö. behöver inte mer hjälp
Slö. 127
Postad: 7 apr 2018 18:03

Placeras från samma land

Tolv personer ska slumpvis placeras i en rad. Tre är från danmark, fyra från Norge och 5 från sverige. Visa att sannolikheten att placeringen blir sådan att de som är från samma land står bredvid varandra är 1/4620. 

 

Jag tänkte att antalet sätt totalt är 12! Men jag kommer faktiskt inte vidare :l

Smaragdalena 80504 – Avstängd
Postad: 7 apr 2018 18:19

Så som jag tolkar uppgiften är det OK om de står i ordningen DDDNNNNSSSSS eller DDDSSSSSNNNN eller NNNNDDDSSSSS eller NNNNSSSSSDDD eller SSSSSDDDNNNN eller SSSSSNNNNDDD, d v s på totalt 6 olika sätt som är lika sannolika (så det räcker att beräkna antalet sätt att placera personerna för en av dem och multiplicera med 6 för att för att få fram hur många olika möjligheter det finns totalt. Hur många olika sätt finns det att ordna personerna så att det stämmer med mönstret DDDNNNNSSSSS?

Slö. 127
Postad: 7 apr 2018 18:40

så det räcker att beräkna antalet sätt att placera personerna för en av dem och multiplicera med 6 för att för att få fram hur många olika möjligheter det finns totalt. Hur många olika sätt finns det att ordna personerna så att det stämmer med mönstret DDDNNNNSSSSS?

Detta förstår jag inte. :l

Smaragdalena 80504 – Avstängd
Postad: 7 apr 2018 18:56

På hur många olika sätt kan du placera 3 danskar bredvid varandra?

På hur många olika sätt kan du placera 4 norrmän bredvid varandra?

På hur många olika sätt kan du placera 5 svenskar bredvid varandra?

Skriv igen når du har kommit så långt.

Slö. 127
Postad: 7 apr 2018 19:04

3! Och 4! Och 5!

Smaragdalena 80504 – Avstängd
Postad: 7 apr 2018 21:30

På hur många olika sätt kan man alltså placera personerna så att de är uppställda enligt DDDNNNNSSSSS?

Slö. 127
Postad: 7 apr 2018 23:46

Förstår faktiskt inte. Är det möjligtvis 3!?

Smaragdalena 80504 – Avstängd
Postad: 8 apr 2018 00:24

Nej. Du har redan räknat ut art man kan placera de tre danskarna på 3! olika sått. På hur många olika sätt kan man välja sen första norrmannen? Multiplicera detta mad antalet danskkombinationwr. På hur många sätt kan man välja sen andre norrmannen? Multiplicera detta med talet du räknat ut. Fortsätt på liknande sätt. 

Slö. 127
Postad: 8 apr 2018 12:33

Kan du förklara varför vi gör på det här viset

Smaragdalena 80504 – Avstängd
Postad: 8 apr 2018 18:01

Vi kan välja den första dansken på 3 sätt. Det blir 3 sätt totalt.

Vi kan välja den andre dansken på 2 sätt. Det blir 3*2 sätt totalt.

Vi kan välja dentredje dansken på 1 sätt. Det blir 3*2*1 sätt totalt.

Detta kan skrivas som 3!.

Vi kan välja den första norrmannen på 4 sätt. Det blir 3!*4 sätt totalt.

Vi kan välja den andre norrmannen på 3 sätt. Det blir 3!*4*3 sätt totalt.

Vi kan välja den tredje norrmannen på 2 sätt. Det blir 3!*4*3*2 sätt totalt.

Vi kan välja den fjärde norrmannen på 1 sätt. Det blir 3!*4*3*2*1 sätt totalt.

Detta kan skrivas som 3!*4!.

Vi kan välja den förste svensken på 5 sätt. Det blir 3!*4!*5 sätt totalt.

Vi kan välja den andre svensken på 4sätt. Det blir 3!*4!*5*4 sätt totalt.

Vi kan välja den tredjesvensken på 3 sätt. Det blir 3!*4!*5*4*3 sätt totalt.

Vi kan välja den fjärde svensken på 2 sätt. Det blir 3!*4!*5*4*3*2 sätt totalt.

Vi kan välja den femte svensken på 1 sätt. Det blir 3!*4!*5*4*3*2*1 sätt totalt.

Detta kan skrivas som 3!*4!*5!.

 

Om vi placerar de olika nationaliteterna i andra ordningar får vi 3!5!4!, 4!3!5!, 4!5!3!, 5!3!4! respektive 5!4!3! olika möjligheter. Alla dessa uttryck har samma värde. Därför kan man placera personerna nationalitetssorterat på 6*5!*4!*3! olika sätt.

Slö. 127
Postad: 8 apr 2018 18:08

Nu fattar jag tack!

Slö. 127
Postad: 8 apr 2018 18:09

Blir det 1/(6!*5!*4!*3!) för att man vill ta reda på sannolikheten för en sådan placering?

Smaragdalena 80504 – Avstängd
Postad: 8 apr 2018 18:42

Nej, detta är antalet gynnsamma fall. Det totala antalet fall beräknade du redan i frågan.

Sannolikheten = (antalet gynnsamma fall)/(totala antalet fall).

Bubo 7418
Postad: 8 apr 2018 19:01

Man skulle kunna tänka sig att de står på rad, men varje landsgrupp samlad vid en flagga.

Först gäller det då att placera ut flaggorna i någon ordning. Det kan vi göra på hur många sätt?

För varje sådan placering av länderna kan vi flytta om norrmännen inom sin grupp på 4! sätt, och så vidare. Det blir en hel del möjligheter.

Slö. 127
Postad: 8 apr 2018 19:07 Redigerad: 8 apr 2018 19:08

Okej undrar blir det enklare om man tänker att eftersom de alltid ska sitta tillsammans så ska man se de som en "enda person" då.

eller blir det fel beräknat

Svara
Close