3 svar
80 visningar
mattegäri behöver inte mer hjälp
mattegäri 9 – Fd. Medlem
Postad: 17 apr 2021 11:13

Permutationer: ”a och b får aldrig ingå samtidigt”

”A, B, C, D och E ska gå på bio. Det finns 5 platser. A och B har bråkat och vill inte sitta bredvid varandra. Hur många sätt kan gruppen placera sig på platserna?”

P(5,5)=120 gäller ju om alla får sitta var de vill.

Hur räknar jag ut hur många platser som finns där A och B sitter bredvid varandra? Tänker att man tar 120 minus nånting?

Laguna Online 30711
Postad: 17 apr 2021 11:21

På hur många sätt kan A och B sätta sig? Sen placerar man resten.

mattegäri 9 – Fd. Medlem
Postad: 17 apr 2021 11:35

Ritade upp det och kom fram till att A och B kan sitta bredvid varandra på 8 olika sätt. Resten av personerna är 3 pers med 3 platser över, så räknar ut det mha permutationer:

8•P(3,3)=8•6=48

Men rätt svar är 72 så det här funkar inte heller.. Antar att jag borde multiplicera med 9 (3^2?) istället för P(3,3) men förstår inte varför.

Micimacko 4088
Postad: 17 apr 2021 12:02

Du har ju räknat ut hur många sätt de inte kan sitta på. Vad blir 120-48?

Svara
Close