2 svar
79 visningar
feffes 20
Postad: 19 okt 2021 12:36

Partikulärlösning - ansats

Hej! Jag undrar vad som blir fel i min partikulärlösning (vet att man kan använda förskjutningsregeln men ändå intresserad av att veta varför detta inte funkar. Jag misstänker att felet ligger i att inte ta hänsyn till produktregeln när jag deriverar ze-x (och försöker man göra det så blir det snabbt riktigt bökigt?!)

Uppgift:
Lösning
Ansats: 
y=ze-x ,   y'=-z'e-x,   y''=z''e-x , y'''=-z'''e-x e-x(-z'''+2z''+z'-2z)=e-x-z'''+2z''+z'-2z=1  z=-12 och y=-12e-x 

Fermatrix 7841 – Fd. Medlem
Postad: 19 okt 2021 12:50

Din ansats bode vara z(t)e-tz(t)e^{-t}, och mycket riktigt måste du använda produktregeln. Det blir lite grisigt dock men om man kör på hela vägen så hamnar man sllutligen till att z3(t)-z''(t)-2z'(t)=1z^3(t)-z''(t)-2z'(t)=1 men det kan du ju själv isåfall verifiera.

Micimacko 4088
Postad: 19 okt 2021 14:15

Är det inte lättare att bara titta på högersidan och hitta på en ansats? Ae^-x är ungefär vad vi vill ha, men det är en del av homogena lösningen så får gångra på ett x också.

Svara
Close