4 svar
167 visningar
mekatronik behöver inte mer hjälp
mekatronik 625
Postad: 14 feb 2022 15:36

Partikel rörelse på cirkulär bana

Hej, jag sitter just nu med denna fråga;

"En partikel rör sig i en cirkelformig bana med radien R på sådant sätt, att tangentialaccelerationen är lika med normalaccelerationen. Bestäm farten som funktion av tiden t och begynnelsehastigheten V0".

I lösningsförslaget som vi fått har läraren satt dessa integrationsgränser, jag förstår dock inte varför han sätter just de värdena: 

Det är det inringade området jag syftar på!

SaintVenant 3938
Postad: 14 feb 2022 19:19

Vid tiden t=0t = 0 har du farten v0v_0. Vid tiden t=tt=t har du farten vv.

mekatronik 625
Postad: 14 feb 2022 20:21
Ebola skrev:

Vid tiden t=0t = 0 har du farten v0v_0. Vid tiden t=tt=t har du farten vv.

Hur kan du veta det i från frågan? Vi får endast att begynnelsehastigheten är v0

SaintVenant 3938
Postad: 14 feb 2022 22:06 Redigerad: 14 feb 2022 22:07

"begynnelsehastighet" betyder just exakt att det är hastigheten vid tiden noll.

Mer precist är det ett begynnelsevillkor för en differentialekvation som beskriver systemets utveckling över tid. I detta fall är differentialekvationen att:

dvdt-v2R=0\dfrac{dv}{dt}-\dfrac{v^2}{R}=0

Detta är en enkel separabel differentialekvation som med begynnelsevillkoret v(t=0)=v0v(t=0)=v_0 ger oss sambandet som söks.

mekatronik 625
Postad: 15 feb 2022 08:37
Ebola skrev:

"begynnelsehastighet" betyder just exakt att det är hastigheten vid tiden noll.

Mer precist är det ett begynnelsevillkor för en differentialekvation som beskriver systemets utveckling över tid. I detta fall är differentialekvationen att:

dvdt-v2R=0\dfrac{dv}{dt}-\dfrac{v^2}{R}=0

Detta är en enkel separabel differentialekvation som med begynnelsevillkoret v(t=0)=v0v(t=0)=v_0 ger oss sambandet som söks.

Då förstår jag, tack!

Svara
Close