Partialbråkuppdelning, icke-reella rötter
Hey,
Det är inte självklart för mig att man kan göra det som är inringat i rött på bilden. Den enda metoden jag kan gällande integraler som kräver partialbråkuppdelning är att faktorisera nämnaren helt och dela upp den med konstanterna A, B, C... osv som nämnare. I detta fallet så blir det tokigt med x^2+1, jag får inga reella rötter? Hur delar jag upp det? Man verkar ha löst det genom att skriva Ex+F istället för att dela upp det i två bråk, E och F. Hur ska jag tänka för att ”vara okej” med att man kan göra så? Och vad är det man har gjort för att kunna göra så?
Hoppas min fråga går att förstå, att den inte försvann i all text! :p
Ekvationen x2 = -1 har inga reella rötter, så det är omöjligt att hitta reelle rötter till den.
I partialbråksuppdelning låter man täljarna vara av grad ett mindre än nämnarna. Man kan säkert bevisa att allt blir bra då.
Laguna skrev:I partialbråksuppdelning låter man täljarna vara av grad ett mindre än nämnarna. Man kan säkert bevisa att allt blir bra då.
Okej... det kan inte bli problem det ev konstanter som följer med? Hur vet man att det räcker med att bara multplicera E med x? Det är ju två bråk som är ihopslagna.
Smaragdalena skrev:Ekvationen x2 = -1 har inga reella rötter, så det är omöjligt att hitta reelle rötter till den.
Det är det som gör det extra klurigt :p
L1vL skrev:Laguna skrev:I partialbråksuppdelning låter man täljarna vara av grad ett mindre än nämnarna. Man kan säkert bevisa att allt blir bra då.
Okej... det kan inte bli problem det ev konstanter som följer med? Hur vet man att det räcker med att bara multplicera E med x? Det är ju två bråk som är ihopslagna.
Jag förstår nog inte riktigt frågan.
Har du något problem med att en av termerna i det uppdelade uttrycket är ?
Ja, alltså... jag hade velat dela upp Ex+F/x^2+1 i två bråk, det går inte med tanke på att en faktoruppdelning för nämnaren inte är tillåtet. Så, läraren verkar ha löst detta med att skriva ihop de två ”egentliga bråken” till ett. Vad jag inte förstår är hur jag ska veta att det räcker med att multiplicera ett x med E? Hur vet vi vad som stod i nämnaren på bråken som nu är ihopsatta?
T.ex Q/(x-2) + R/3 slås ihop genom att man multiplicerar respektive bråk med faktorerna som saknas så att nämnaren blir lika och vi kan slå ihop det. Jag vill förstå var täljaren Ex+F kommer ifrån. Går det att förstå vad jag menar? Hur kommer man fram till att den ska se ut just sådär? Täljaren ser ju olika ut beroende på hur resp nämnare ser ut.
Om du skulle envisas med att dela upp det i två (komplexa) bråk så skulle nämnarna bli (x-(a+bi)) respektive (x-(a-bi)). Men gör inte det! Låt täljaren vara ett förstagradsuttryck, så löser allt sig.
Ex+F är det mest generella förstagradsuttrycket.
Nej jag vill absolut inte dela upp det i komplexa bråk. Jag ville bara förstå varför det var okej att göra som läraren gjort, vilket jag nog hajar nu. Tack!!