20 svar
355 visningar
Stenenbert behöver inte mer hjälp
Stenenbert 308
Postad: 9 maj 2020 01:57 Redigerad: 9 maj 2020 01:58

Otillräcklig info?

Hej, det känns som att jag inte får tillräcklig info i den här uppgiften för att lösa uppgiften:

"I triangeln ABC är sidorna 2,1 cm, 3,1 cm och 4,2 cm. ^A = 30° och ^B = 70°. Beräkna höjden mot den längsta sidan."

Jag kan rita upp en sådan triangel med ögonmått, men problemet är att jag vet inte vilket hörn som vinklarna A respektive B tillhör.

Meningen är att man ska använda sig av pythagoras sats. Ska jag innan det då bara anta var någonstans vinklarna sitter, baserat på hur jag tycker triangeln ser ut? Och hur kan jag gå till väga efter det för att räkna på höjden?

Laguna Online 30472
Postad: 9 maj 2020 03:59 Redigerad: 9 maj 2020 04:20

När du vet alla sidorna kan du räkna ut alla vinklarna med cosinussatsen, så det var egentligen onödigt att tala om hur stora några vinklar är.

Edit: Du kan strunta i vinklarna helt och hållet. Jag kan avslöja att de är 29, 45 och 106 grader i själva verket, men cosinussatsen kommer först i Matte3. Rita triangeln, med höjden mot sidan 4,2. Inför en variabel x för den ena delen av sidan 4,2 och räkna sedan med Pythagoras. 

ErikR 188
Postad: 9 maj 2020 06:44 Redigerad: 9 maj 2020 06:52

Utan att rita så vågar jag svara...

Om du ritar upp triangeln och drar höjden så får du en rätvinklig triangel, som Laguna tipsar. Använd sedan helt enkelt  förhållandet mellan sidor och sin() eller cos() . Och sedan kanske Pythagoras.  Lite att fundera, men rita så löser det sig nog.

Eftersom du kanske inte känner till cosinusteoremet så är vinklarna givna, trots att du skulle kunna räkna ut dem själv.

Om jag har tid så kan jag titta lite mer när jag vaknat! Lite osäker på vinklarna. 


PerEri 190
Postad: 9 maj 2020 08:14 Redigerad: 9 maj 2020 08:39

Du har fått bra tips från Laguna och ErikR. Vill bara komplettera med en kommentar på att du skriver

Jag kan rita upp en sådan triangel med ögonmått, men problemet är att jag vet inte vilket hörn som vinklarna A respektive B tillhör.

Om sidorna i en triangel är benämnda med a, b och c så brukar man förknippa motstående vinkel med samma bokstav. I figuren nedan (som jag lånat från Wikipedia https://upload.wikimedia.org/wikipedia/commons/5/5e/Acute_Triangle.svg) så ser du vad jag menar.

Här har man valt liten bokstav för sidorna och stor bokstav för vinklarna, men konceptet är detsamma oavsett stor eller liten bokstav.

Lycka till med geometrin!

ConnyN 2582
Postad: 9 maj 2020 09:32
Laguna skrev:

När du vet alla sidorna kan du räkna ut alla vinklarna med cosinussatsen, så det var egentligen onödigt att tala om hur stora några vinklar är.

Edit: Du kan strunta i vinklarna helt och hållet. Jag kan avslöja att de är 29, 45 och 106 grader i själva verket, men cosinussatsen kommer först i Matte3. Rita triangeln, med höjden mot sidan 4,2. Inför en variabel x för den ena delen av sidan 4,2 och räkna sedan med Pythagoras. 

Det var knepiga vinklar? 30 + 70 + 80 =180 gällde när jag gick i skolan, men det kanske är omodernt idag :-)

Förlåt skämtet Laguna, men det var så oerhört frestande.

ConnyN 2582
Postad: 9 maj 2020 09:39
Stenenbert skrev:

Hej, det känns som att jag inte får tillräcklig info i den här uppgiften för att lösa uppgiften:

"I triangeln ABC är sidorna 2,1 cm, 3,1 cm och 4,2 cm. ^A = 30° och ^B = 70°. Beräkna höjden mot den längsta sidan."

Jag kan rita upp en sådan triangel med ögonmått, men problemet är att jag vet inte vilket hörn som vinklarna A respektive B tillhör.

Meningen är att man ska använda sig av pythagoras sats. Ska jag innan det då bara anta var någonstans vinklarna sitter, baserat på hur jag tycker triangeln ser ut? Och hur kan jag gå till väga efter det för att räkna på höjden?

Eftersom vi har alla tre vinklarna så kan vi rita en triangel på fri hand med de tre. Tips 30 + 70 + ^C =180

Då vet vi att längsta sidan är 4,2 dvs hypotenusan. En av sidorna är minst den ska vara ungefär hälften av hypotenusan och sedan har vi den korta sidan. Inte så svårt att räkna ut på fri hand hur det ser ut.

Nu blir tangens för en av vinklarna väldigt användbar.

Laguna Online 30472
Postad: 9 maj 2020 10:16
ConnyN skrev:
Laguna skrev:

När du vet alla sidorna kan du räkna ut alla vinklarna med cosinussatsen, så det var egentligen onödigt att tala om hur stora några vinklar är.

Edit: Du kan strunta i vinklarna helt och hållet. Jag kan avslöja att de är 29, 45 och 106 grader i själva verket, men cosinussatsen kommer först i Matte3. Rita triangeln, med höjden mot sidan 4,2. Inför en variabel x för den ena delen av sidan 4,2 och räkna sedan med Pythagoras. 

Det var knepiga vinklar? 30 + 70 + 80 =180 gällde när jag gick i skolan, men det kanske är omodernt idag :-)

Förlåt skämtet Laguna, men det var så oerhört frestande.

Jag vet inte vari skämtet består, men det gör inget. Här är en bild.

ConnyN 2582
Postad: 9 maj 2020 10:39
Laguna skrev:
ConnyN skrev:
Laguna skrev:

När du vet alla sidorna kan du räkna ut alla vinklarna med cosinussatsen, så det var egentligen onödigt att tala om hur stora några vinklar är.

Edit: Du kan strunta i vinklarna helt och hållet. Jag kan avslöja att de är 29, 45 och 106 grader i själva verket, men cosinussatsen kommer först i Matte3. Rita triangeln, med höjden mot sidan 4,2. Inför en variabel x för den ena delen av sidan 4,2 och räkna sedan med Pythagoras. 

Det var knepiga vinklar? 30 + 70 + 80 =180 gällde när jag gick i skolan, men det kanske är omodernt idag :-)

Förlåt skämtet Laguna, men det var så oerhört frestande.

Jag vet inte vari skämtet består, men det gör inget.

OK då är jag skyldig dig en ursäkt. 

Man skulle dock kunna tänka sig att det inte är vinklarna som är felaktigt uppgivna utan sidan 3,1 kan vara fel och ska vara 4,1 

eller 4,14 om man är mer noggrann?

ErikR 188
Postad: 9 maj 2020 10:40
ConnyN skrev:
Stenenbert skrev:

Hej, det känns som att jag inte får tillräcklig info i den här uppgiften för att lösa uppgiften:

"I triangeln ABC är sidorna 2,1 cm, 3,1 cm och 4,2 cm. ^A = 30° och ^B = 70°. Beräkna höjden mot den längsta sidan."

Jag kan rita upp en sådan triangel med ögonmått, men problemet är att jag vet inte vilket hörn som vinklarna A respektive B tillhör.

Meningen är att man ska använda sig av pythagoras sats. Ska jag innan det då bara anta var någonstans vinklarna sitter, baserat på hur jag tycker triangeln ser ut? Och hur kan jag gå till väga efter det för att räkna på höjden?

Eftersom vi har alla tre vinklarna så kan vi rita en triangel på fri hand med de tre. Tips 30 + 70 + ^C =180

Då vet vi att längsta sidan är 4,2 dvs hypotenusan. En av sidorna är minst den ska vara ungefär hälften av hypotenusan och sedan har vi den korta sidan. Inte så svårt att räkna ut på fri hand hur det ser ut.

Nu blir tangens för en av vinklarna väldigt användbar.

Hypotenusa finns bara i rätvinkliga trianglar. Och som jag sa förut - en enkel tillämpning av sinus ger svaret, inte tangens. Triangeln är inte rätvinklig.

ConnyN 2582
Postad: 9 maj 2020 10:48
ErikR skrev:
ConnyN skrev:
Stenenbert skrev:

Hej, det känns som att jag inte får tillräcklig info i den här uppgiften för att lösa uppgiften:

"I triangeln ABC är sidorna 2,1 cm, 3,1 cm och 4,2 cm. ^A = 30° och ^B = 70°. Beräkna höjden mot den längsta sidan."

Jag kan rita upp en sådan triangel med ögonmått, men problemet är att jag vet inte vilket hörn som vinklarna A respektive B tillhör.

Meningen är att man ska använda sig av pythagoras sats. Ska jag innan det då bara anta var någonstans vinklarna sitter, baserat på hur jag tycker triangeln ser ut? Och hur kan jag gå till väga efter det för att räkna på höjden?

Eftersom vi har alla tre vinklarna så kan vi rita en triangel på fri hand med de tre. Tips 30 + 70 + ^C =180

Då vet vi att längsta sidan är 4,2 dvs hypotenusan. En av sidorna är minst den ska vara ungefär hälften av hypotenusan och sedan har vi den korta sidan. Inte så svårt att räkna ut på fri hand hur det ser ut.

Nu blir tangens för en av vinklarna väldigt användbar.

Hypotenusa finns bara i rätvinkliga trianglar. Och som jag sa förut - en enkel tillämpning av sinus ger svaret, inte tangens. Triangeln är inte rätvinklig.

Vi får hypotenusan om vi ritar höjden mot den längsta sidan som är 4,2 cm och med de nya rönen så ser det ut som om hypotenusan blir 4,14 cm.

ErikR 188
Postad: 9 maj 2020 10:56
ConnyN skrev:
ErikR skrev:
ConnyN skrev:
Stenenbert skrev:

Hej, det känns som att jag inte får tillräcklig info i den här uppgiften för att lösa uppgiften:

"I triangeln ABC är sidorna 2,1 cm, 3,1 cm och 4,2 cm. ^A = 30° och ^B = 70°. Beräkna höjden mot den längsta sidan."

Jag kan rita upp en sådan triangel med ögonmått, men problemet är att jag vet inte vilket hörn som vinklarna A respektive B tillhör.

Meningen är att man ska använda sig av pythagoras sats. Ska jag innan det då bara anta var någonstans vinklarna sitter, baserat på hur jag tycker triangeln ser ut? Och hur kan jag gå till väga efter det för att räkna på höjden?

Eftersom vi har alla tre vinklarna så kan vi rita en triangel på fri hand med de tre. Tips 30 + 70 + ^C =180

Då vet vi att längsta sidan är 4,2 dvs hypotenusan. En av sidorna är minst den ska vara ungefär hälften av hypotenusan och sedan har vi den korta sidan. Inte så svårt att räkna ut på fri hand hur det ser ut.

Nu blir tangens för en av vinklarna väldigt användbar.

Hypotenusa finns bara i rätvinkliga trianglar. Och som jag sa förut - en enkel tillämpning av sinus ger svaret, inte tangens. Triangeln är inte rätvinklig.

Vi får hypotenusan om vi ritar höjden mot den längsta sidan som är 4,2 cm och med de nya rönen så ser det ut som om hypotenusan blir 4,14 cm.

Nej, om du drar höjden mot den längsta sidan så får du två rätvinkliga trianglar. Den ena har hypotenusan 2,1 och den andra 3,1 . Hur problemet ska lösas har jag redan tipsat om!

Visa spoiler

Skriv ditt dolda innehåll här

Laguna Online 30472
Postad: 9 maj 2020 10:59
ConnyN skrev:
Laguna skrev:
ConnyN skrev:
Laguna skrev:

När du vet alla sidorna kan du räkna ut alla vinklarna med cosinussatsen, så det var egentligen onödigt att tala om hur stora några vinklar är.

Edit: Du kan strunta i vinklarna helt och hållet. Jag kan avslöja att de är 29, 45 och 106 grader i själva verket, men cosinussatsen kommer först i Matte3. Rita triangeln, med höjden mot sidan 4,2. Inför en variabel x för den ena delen av sidan 4,2 och räkna sedan med Pythagoras. 

Det var knepiga vinklar? 30 + 70 + 80 =180 gällde när jag gick i skolan, men det kanske är omodernt idag :-)

Förlåt skämtet Laguna, men det var så oerhört frestande.

Jag vet inte vari skämtet består, men det gör inget.

OK då är jag skyldig dig en ursäkt. 

Man skulle dock kunna tänka sig att det inte är vinklarna som är felaktigt uppgivna utan sidan 3,1 kan vara fel och ska vara 4,1 

eller 4,14 om man är mer noggrann?

Ja, det kan vara enklaste sättet att reparera uppgiften.

ErikR 188
Postad: 9 maj 2020 11:05 Redigerad: 9 maj 2020 11:06

Ja, det var mycket att fundera över!

Och det var inte Otillräcklig info, snarare tvärtom!

Men ska vi låta Stenenbert fundera lite innan vi fortsätter? Frågeställaren kanske blir förvirrad annars!

Kaffe och melodikryss!

Stenenbert 308
Postad: 9 maj 2020 16:26 Redigerad: 9 maj 2020 16:27

Ja, det var verkligen mycket att fundera över! Men om vi då antar att triangelns längder är felaktiga och att det ska vara 4,1 i stället för 3,1, är detta då rätt?

larsolof 2684 – Fd. Medlem
Postad: 9 maj 2020 16:47

Fel i uppgiften.

Det går inte att skapa en triangel med uppgiftens förutsättningar.

"I triangeln ABC är sidorna 2,1 cm, 3,1 cm och 4,2 cm. ^A = 30° och ^B = 70°"

Stenenbert 308
Postad: 9 maj 2020 16:51

Ja, men byter man ut 3,1 mot 4,1 ska det fungera enligt ConnyN

larsolof 2684 – Fd. Medlem
Postad: 9 maj 2020 17:08 Redigerad: 9 maj 2020 17:19

Det stämmer inte heller.
Men eftersom författaren av uppgiften skrivit fel så är
det ingen mening att gissa på andra längder eller vinklar.
Byt uppgift istället.

Skaft 2373 – F.d. Moderator
Postad: 9 maj 2020 17:36

För den intresserade: Det här går utanför kursinnehållet, men ett lite kul sätt att lösa uppgiften (om sidlängderna vore korrekta) är via Herons formel. Med den kan man beräkna triangelns area bara med hjälp av sidlängderna. Samtidigt gäller ju den vanliga areaformeln för trianglar: A = bh/2. Om nu basen är triangelns längsta sida 4.2, och arean A är känd via Heron, kan höjden h lösas ut.

Varken vinklar eller Pythagoras sats behövs alltså! (nåja, Pythagoras ingår väl i beviset av Herons formel, men ändå)

ErikR 188
Postad: 9 maj 2020 17:41

Om du tittar på Lagunas figur så blir höjden helt enkelt 2.1 * sin(70). Frånsett felaktigheten i uppgiften.  

I din lösning så har du bara antagit att sidan delas i två lika delar. 

ConnyN 2582
Postad: 9 maj 2020 19:28
Stenenbert skrev:

Ja, det var verkligen mycket att fundera över! Men om vi då antar att triangelns längder är felaktiga och att det ska vara 4,1 i stället för 3,1, är detta då rätt?

larsolof har rätt det stämde inte riktigt det jag skrev. Det går att få till något så när med de givna vinklarna och sidorna 2,1 samt 4,2  men det känns inte rimligt att jobba mer med det.

Dina uppställningar ser bra ut, men du visar inte hur du gick till väga när du räknade fram värdet.

Har du något facit så kan vi möjligen hitta felet?

Stenenbert 308
Postad: 9 maj 2020 19:54

Jag orkade inte riktigt skriva ut allt utan slog det direkt på miniräknaren.

Men, nej, jag har inget facit till uppgiften. Uppgiften vet jag inte varifrån den ursprungligen kommer, fanns med i en pdf från min lärare.

Svara
Close