9 svar
89 visningar
dfdfdf behöver inte mer hjälp
dfdfdf 122
Postad: 1 mar 2023 17:38

Optimering icke-kompakt mängd, gränsvärden, flervariabel

För att bedöma hur funktionen beter sig utanför det valda kompakta området utför man en gränsvärde undersökning. Jag undrar om  mitt sätt att utföra mot minus oändligheten är korrekt eller inte.

Svaret blir att fmin finns och är 0 och fmax existerar inte pga att gränsvärdet går mot oändligheten när avståndet från origo går mot oändligheten.

PATENTERAMERA 5945
Postad: 1 mar 2023 19:16 Redigerad: 1 mar 2023 19:16

Notera att r = x2+y2 alltid är större än eller lika med 0. Du kan inte få detta uttryck att gå mot -.

Även om det skulle vara så att funktionen går mot 0 då r går mot  så betyder inte det att funktionsvärdet faktiskt blir 0 någonstans, så logiken haltar.

Du får tänka lite till.

Vad händer tex om du sätter t = π och låter r gå mot .

Kan funktionen bli 0 någonstans? Kan funktionen bli mindre än 0?

dfdfdf 122
Postad: 1 mar 2023 19:18 Redigerad: 1 mar 2023 19:18
PATENTERAMERA skrev:

Notera att r = x2+y2 alltid är större än eller lika med 0. Du kan inte få detta uttryck att gå mot -.

Även om det skulle vara så att funktionen går mot 0 då r går mot  så betyder inte det att funktionsvärdet faktiskt blir 0 någonstans, så logiken haltar.

Du får tänka lite till.

Vad händer tex om du sätter t = π och låter r gå mot .

Kan funktionen bli 0 någonstans? Kan funktionen bli mindre än 0?

Var otydlig. Facit: fmin = 0, fmax = exister inte.

Fmin kommer ifrån en stationär punkt ovan, uträkningarna syns inte.

 

PATENTERAMERA 5945
Postad: 1 mar 2023 19:22

Enklast är kanske att sätta y = 0 och låta x gå mot -. Vad händer då?

dfdfdf 122
Postad: 1 mar 2023 19:25
PATENTERAMERA skrev:

Enklast är kanske att sätta y = 0 och låta x gå mot -. Vad händer då?

Alltså att titta på f(x,0), då går den mot + oändligheten. 

PATENTERAMERA 5945
Postad: 1 mar 2023 19:29

Därför finns det inget största funktionsvärde. Sedan är det enkelt från den polära formeln att se att funktionen aldrig kan bli negativ, men att den blir 0 i origo, vilket ger min.

dfdfdf 122
Postad: 1 mar 2023 19:32
PATENTERAMERA skrev:

Därför finns det inget största funktionsvärde. Sedan är det enkelt från den polära formeln att se att funktionen aldrig kan bli negativ, men att den blir 0 i origo, vilket ger min.

Varför satte du just y = 0? 

PATENTERAMERA 5945
Postad: 1 mar 2023 19:35

Du kan lika gärna sätta x = 0 och låta y gå mot negativa oändligheten.

dfdfdf 122
Postad: 2 mar 2023 20:15
PATENTERAMERA skrev:

Du kan lika gärna sätta x = 0 och låta y gå mot negativa oändligheten.

Vi sätter x = 0 och låter y variera, eller tvärtom. Men hänger inte med varför vi endast behöver kolla på när x respektive y är konstant?

Är det för att om det hade funnits ett gränsvärde så hade både y och x konvergerat var för sig och tillsammans?

PATENTERAMERA 5945
Postad: 3 mar 2023 00:52

Det räcker för att vi skall kunna sluta oss till att vi kan göra funktionsvärdet godtyckligt stort, så att inget funktionsvärde kan sägas vara det största. Vi ser att på x- och y-axeln kan vi hitta godtyckligt stora funktionsvärden. Det är allt.

Svara
Close