8 svar
311 visningar
emah549 behöver inte mer hjälp
emah549 15
Postad: 8 sep 2019 10:25 Redigerad: 8 sep 2019 10:43

Olikhet, andragrads

Hej! Jag har fastnat på en uppgift som jag inte lyckas tänka "rätt" i, hoppas någon vänlig själ kan förklara vart det blir fel.

När jag skriver <= eller >= menar jag "mindre eller lika med" respektive "Större eller lika med".

6x2-5x<=-1
6x2-5x+1<=0
(2x-1)(3x-1)<=0

Eftersom jag vill att vänsterled ska vara mindre eller lika med 0 så tänker jag att respektive parantes behöver uppfylla denna olikhet:

2x-1<=0
2x<=1
x<=1/2

3x-1<=0
3x<=1
x<=1/3

Vilket kan vara sant, men svaret enligt facit (och wolfram alpha när jag skriver in det där) är:

1/3<=x<=1/2

 

Min fråga är, varför ska x vara större än 1/3? Rent algebraiskt verkar det som att det behöver vara mindre eller lika med 1/3.

Smaragdalena 80504 – Avstängd
Postad: 8 sep 2019 10:50

Flyttade tråden från Matematik/Universitet till Ma2,som räcker för att lösa uppgiften. /moderator

Standardfråga 1a: Har du ritat?

Om du av någon outgrundlig anledning vägrar rita:

Om x<1/3 är båda parenteserna negativa, så produkten blir positiv.
Om 1/3<x<1/2 är den ena parentesen positiv och den andra negativ, så produkten är negativ.
Om 1/2<x är båda parenteserna negativa, så produkten blir positiv.

Arktos 4391
Postad: 8 sep 2019 10:53

Nja, om  a<0  och  b<0, så blir ju  a·b>0 .
De får inte båda vara negativa.

emah549 15
Postad: 8 sep 2019 11:03 Redigerad: 8 sep 2019 11:11

Tack för svaren! Jag är med på själva motiveringen men funderar lite nu på hur jag kan "standardisera" detta sätt att tänka i skrift. Liksom, vad är metoden jag bör tillämpa i denna sorts fråga? Den metod jag kan komma på utifrån era svar (utöver att rita) är följande:

Räkna ut x större eller mindre än 0 för vardera parantes (vet inte vilken av dem som är negativ respektive positiv), utesluta de kombinationer av de två som är motsägande. Sedan lägga in värdet av vardera kombination för att se vilket som passar. Detta känns överdrivet krångligt.

Qetsiyah 6574 – Livehjälpare
Postad: 8 sep 2019 11:39 Redigerad: 8 sep 2019 11:48

Dela upp i fall:

Fall1: första parantesen är negativ, andra positiv

Fall2: första parantesen är positiv, andra negativ

Och så får du räkna ut när en av de är noll också.

Svaret är alla x som stämmer in på fall1 eller fall2

Laguna Online 30704
Postad: 8 sep 2019 11:49

Ibland är det precis så krångligt, och ibland kan man ta genvägar. 

Qetsiyah 6574 – Livehjälpare
Postad: 8 sep 2019 11:57

Mitt svar var klumpigt, men i alla fall, om du provar fall1 så ger det att x ska vara mindre än 1/3 och större än 1/2 vilket är omöjligt och ointressant. Då struntar du i det och tar resultatet från enbart fall2. (Vad du har visat är att ett av fallen är ointressant vilket faktiskt är viktigt)

Smaragdalena 80504 – Avstängd
Postad: 8 sep 2019 12:34
emah549 skrev:

Tack för svaren! Jag är med på själva motiveringen men funderar lite nu på hur jag kan "standardisera" detta sätt att tänka i skrift. Liksom, vad är metoden jag bör tillämpa i denna sorts fråga? Den metod jag kan komma på utifrån era svar (utöver att rita) är följande:

Räkna ut x större eller mindre än 0 för vardera parantes (vet inte vilken av dem som är negativ respektive positiv), utesluta de kombinationer av de två som är motsägande. Sedan lägga in värdet av vardera kombination för att se vilket som passar. Detta känns överdrivet krångligt.

Som vanligt: Rita!

dr_lund 1177 – Fd. Medlem
Postad: 8 sep 2019 14:08

Olikheter av detta slag, löser man oftast genom ett teckenschema. Grunden är, precis, som du skriver, att

du flyttar över, så du har noll i H.L. Faktorisera därefter V.L. precis som du gjort:

(2x-1)(3x-1)0. Teckenstudera  genom följande schema (Sätt resp faktor i V.L. på enskild rad. Och notera var på tallinjen vi har teckenskifte. Gör slutligen en egen rad med "nettotecknet" för olikheten P(x)

  (Tallinjen)                  x=1/3                             x=1/2               


2x-1              - - - - - - - - - - - - - - - - - - - - - -  0 + + + + + +                                        


3x-1        - - - - - - - - -  0  + + + + + + + + + + + + + +


P(x)       + + + + + + + + 0  - - - - - - - - - - - - - - 0 + + + + + + +         (Hänger du med? "Lika tecken : plus, olika tecken : minus)

Då kan du bekvämt avläsa var på tallinjen det gäller att P(x)0.

Svara
Close