12 svar
227 visningar
Maria123 290
Postad: 9 sep 2019 09:38

Nollställen


Hej, skulle verkligen uppskatta om någon kan förklara hur jag ska gå tillväga för att lösa denna uppgift? De ända förkunskaper jag har ang nollställen är att en funktion av grad n har n-1 stycken nollställen.

pepparkvarn 1871 – Fd. Medlem
Postad: 9 sep 2019 09:43

De ända förkunskaper jag har ang nollställen är att en funktion av grad n har n-1 stycken nollställen

Här har du fått något om bakfoten. En funktion av grad n har maximalt n nollställen, och maximalt n - 1 extrempunkter

Prova att bryta ut den största gemensamma faktorn ur funktionen. Vad får du för funktionsuttryck? :)

Laguna Online 30472
Postad: 9 sep 2019 09:44

Ett polynom av grad n har n nollställen, annars var det rätt.

Kan du faktorisera uttrycket?

Eller ett annat angreppssätt: kan du se några nollställen till uttrycket?

Maria123 290
Postad: 9 sep 2019 09:57

Detta får jag när jag när jag faktoriserar funktionen, men jag förstår fortfarande inte hur detta kan hjälpa mig? Svaret enligt facit är 2

Smaragdalena 80504 – Avstängd
Postad: 9 sep 2019 10:03

Bryt ut lite mindre, så att det i parentesen är ett polynom. Då kan du använda nollproduktmetoden för att hitta nollställena.

Maria123 290
Postad: 9 sep 2019 10:13

Är detta rätt?

Maria123 290
Postad: 9 sep 2019 10:18

Men jag fattar inte varför det var så viktigt att nämna att n är ett heltal större än 1?

pepparkvarn 1871 – Fd. Medlem
Postad: 9 sep 2019 10:27

Om n kunde vara mindre än ett, skulle funktionen kunna vara y=x1-x0=x-1, som har ett nollställe, exempelvis. 

Smaragdalena 80504 – Avstängd
Postad: 9 sep 2019 10:36

Enligt algebrans fundamentalsats har en n-tegrads polynomfunktion n stycken nollställen, om man räknar med komplexa nollställen och om man räknar dubbelrötter som 2, trippelrötter som 3 och så vidare. Ditt svar är alltså fel.

Maria123 290
Postad: 9 sep 2019 20:14

Om mitt svar är fel, hur löser man uppgiften annars? 

woozah 1414 – Fd. Medlem
Postad: 9 sep 2019 20:47
Maria123 skrev:

Om mitt svar är fel, hur löser man uppgiften annars? 

 

Man sätter bara en undre begräsning på nn. Tänk om n=15n=15, då har du ekvationen x14(x-1)=0x^{14}(x-1)=0. Hur många lösningar har den?

Maria123 290
Postad: 10 sep 2019 16:55

X1= 1 och X2= 0. Alltså 2 lösningar

woozah 1414 – Fd. Medlem
Postad: 10 sep 2019 17:31
Maria123 skrev:

X1= 1 och X2= 0. Alltså 2 lösningar

Det är lite här problemet ligger. x=1x=1 är en lösning, men sedan har du ekvationen x14=0x^{14}=0. Där är x=0x=0 inte bara en lösning, utan fjorton lösningar. Man säger då att x=0x=0 är en rot med multiplicitet 14 (den har alltså 14 identiska rötter).

Svara
Close