3 svar
71 visningar
fattiglapp 45
Postad: 2 okt 2021 09:32

När är massan i arbete med mekanisk energi ointressant?

Hej! 

När man arbetar med mekanisk energi, och ska omvandla energin från exempelvis lägesenergi till kinetisk energi, spelar ibland massan inte någon roll, och man kan förenkla bort den. Men jag kan sällan se när detta är lämpligt

Vid fritt fall vet jag att massan kan förenklas bort, men i bifogad uppgift kan jag inte förstå HUR man ser att massan är ointressant.

 

Yngve 40561 – Livehjälpare
Postad: 2 okt 2021 09:42 Redigerad: 2 okt 2021 09:44

Generellt sett - Om massan m är en gemensam faktor i alla termer som ingår i jämviktsekvationen så kan du förkorta bort den överallt.

Om den inte är det så kan du inte förkorta bort den och massan är då troligtvis relevant.

Kort sagt - du kanske inte alltid kan se det i förväg, men du upptäcker det när du har formulerat dina jämviktsekvationer.

Pröva i exemplet med pendeln. Hur ser jämviktsekvationen ut avseende den mekaniska energin?

fattiglapp 45
Postad: 2 okt 2021 10:00 Redigerad: 2 okt 2021 10:02
Yngve skrev:

Generellt sett - Om massan m är en gemensam faktor i alla termer som ingår i jämviktsekvationen så kan du förkorta bort den överallt.

Om den inte är det så kan du inte förkorta bort den och massan är då troligtvis relevant.

Kort sagt - du kanske inte alltid kan se det i förväg, men du upptäcker det när du har formulerat dina jämviktsekvationer.

Pröva i exemplet med pendeln. Hur ser jämviktsekvationen ut avseende den mekaniska energin?

Stämmer mitt resonemang  i denna uppgift:

Att man kan förenkla bort m när man exempelvis ska räkna ut den högsta hastigheten i pendeln, då den punkten är Ep 0 och Ek max ?  Detta pga att Ek då är ekvivalent med Ep

Yngve 40561 – Livehjälpare
Postad: 2 okt 2021 10:44

Du måste ställa upp uttrycken för och sambanden mellan Ep och Eför att se att du kan förkorta bort massan m.

Svara
Close