3 svar
223 visningar
Fotbollskillen12 behöver inte mer hjälp
Fotbollskillen12 475
Postad: 24 dec 2020 13:51

Multiplikationprincipen

Visa att ett val bland p föremål följt av ett val bland q föremål alltid leder till fler valmöjligheter, än ett val bland p+q föremål, förutsatt attp≥2 och q>2. Kollade på följande video https://www.youtube.com/watch?v=OdqfOA3YrZo fast förstår inte varför i slutet att p>q/(q-1) indikerar att pq>p+q

Skaft 2373 – F.d. Moderator
Postad: 24 dec 2020 13:57

Från p>qq-1p > \frac{q}{q-1}, multiplicera båda led med q-1. (Eftersom q > 2, måste q-1 vara positivt, så vi behöver inte vända olikhetstecknet som man gör när man multiplicerar med nåt negativt). Då får du

p(q-1)>qp(q-1) > q

Utveckla parentes till pq - p > q, flytta sen över p:et till pq > p + q.

Fotbollskillen12 475
Postad: 25 dec 2020 02:19

Fast hur bevisar det att pq>p+q bara för att man bevisar att q/(q-1) är mindre än 2?

Skaft 2373 – F.d. Moderator
Postad: 25 dec 2020 09:37

I videon visas hur olikheten pq > p+q är ekvivalent med olikheten p > q/(q-1). Gäller den ena, så gäller den andra. Sen konstateras att den andra måste gälla, eftersom kvoten är max 1.5 medan p måste vara större än 2. Den andra olikheten är alltså uppfylld, och då är den första, ekvivalenta, olikheten också uppfylld.

Svara
Close