Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
4 svar
75 visningar
Marcus N behöver inte mer hjälp
Marcus N 1775
Postad: 16 okt 2021 13:10

Motsägelsebevis

Visa 

 

 

Hur vet man att p^2 är jämnt ? Är det på grund av p^2 = 2q^2 ??

Arktos 4435
Postad: 16 okt 2021 13:41

Ja.

SeriousCephalopod 2720
Postad: 16 okt 2021 13:54

Kort: Ja. Implikationen löper är

Hjälpsats 1: Om p2p^2 är jämt så måste pp vara jämt


Långt:

Om vi dock ska vara ärliga så är detta knappast uppenbart som en allmän regel. Tänker man på några exempel en stund så känns det vettigt, men exempel är ju inte bevis. Så egentligen behöver man göra ett så kallat hjälpbevis och även bevisa detta om beviset ska ha alla steg ifyllda.

Bevis (genom motsägelse)

Låt säga att pp är ett positivt heltal och att p2p^2 är jämt. Låt oss anta att pp inte är jämt och visa att det leder till motsägelse. Om pp inte är jämt så är det udda och det finns ett tal k sådant att p=2k+1p = 2k + 1. Då är p2=(2k+1)2=4k2+2k+1=2(k2+k)+1p^2 = (2k + 1)^2 = 4k^2 + 2k + 1 = 2(k^2 + k) + 1 men det betyder att p2p^2 skulle vara udda. Därmed stämmer inte antagandet att pp är jämt och därmed måste pp vara udda.

Kortversionen av detta är: Om p2p^2 är jämt så måste pp vara jämt eftersom utifall pp var udda så skulle p2p^2 vara udda så udda*udda är udda.

Laguna Online 31189
Postad: 16 okt 2021 14:08

Ett heltal gånger 2 brukar vara jämnt.

farfarMats 1246
Postad: 16 okt 2021 14:31

Om jämna - ojämna kvadrater: p*p har samma faktorer som p bara i dubbel upplaga, dvs antingen finns det ingen faktor 2 i någondera eller i båda.

Svara
Close