7 svar
102 visningar
dajamanté behöver inte mer hjälp
dajamanté 5139 – Fd. Medlem
Postad: 13 okt 2017 07:01

Morgontrött HP: skåp

Jag är rädd att ni redan förklarade detta för mig för ett tag sedan, men jag kan inte hitta svaret Oo!

Vad är grejen med skåparna? Jag kan inte skriva nåt vettig ekvation med detta...

Smutstvätt 25080 – Moderator
Postad: 13 okt 2017 07:41 Redigerad: 13 okt 2017 07:41

Påstående nummer ett säger oss inte tillräckligt, eftersom vi inte vet det totala antalet skåp - men det ger oss i alla fall ekvationen S19:30=U-L=U-22

Påstående nummer två ger att en ökning med 18 ger: U19:00+18=34·STotal. Vi har fortfarande två okända variabler. Detta kan också ses från att vi får en uppgift om ökningen (+18) och en uppgift om det totala antalet (3/4). Om uppgiften sagt att de arton skåpen motsvarade en viss andel av skåpen hade det gått att räkna ut, men nu har vi uppgifter om två olika variabler.

Om vi däremot kombinerar dessa vet vi att 22 lediga skåp motsvarar en fjärdedel av skåpen. Alltså måste det finnas åttioåtta skåp. 66 av dessa var upptagna halv åtta, och arton av dem hade blivit det efter klockan sju. Då måste 48 skåp ha varit upptagna klockan sju. (Dubbelkolla detta med facit; jag är fortfarande ganska ny kring dessa uppgifter)

dajamanté 5139 – Fd. Medlem
Postad: 13 okt 2017 11:39
Smutstvätt skrev :


Om vi däremot kombinerar dessa vet vi att 22 lediga skåp motsvarar en fjärdedel av skåpen. 

Förlåt jag är fortfarande inte med. Hur kan 22 motsvara en 1/4e del?

Påstående 2 ger att 3/4 del är upptagna om man tar +18 skåp, men vad menas med det? Är det inte alla skåp som var upptagna mellan 19 och 19:30?

joculator 5289 – F.d. Moderator
Postad: 13 okt 2017 13:07 Redigerad: 13 okt 2017 13:09

Ett annat sätt att tänka (fast det såklart är samma):

Totalt fanns T=L+U skåp       (T=totalt, L=lediga,U=upptagna)

19.00  var ett visst antal L lediga.
19.30 had det några av dem (18st) som BLIVIT upptagna. Kvar fanns alltså L-18 st som vi vet blev 22
L-18=22
L=40   (det fanns alltså 40 lediga skåp 19.00)

19.00 var ett visst antal U upptagna
19.30 var det 18st fler. Antal upptagna blev alltså U+18

 


Nu visade det sig att U+18=T*3/4   
Men T=U+L så
U+18=(U+L)*3/4            (men L=40)
U+18=(U+40)*3/4
4U+72=3U+120
U=48

Smutstvätt 25080 – Moderator
Postad: 13 okt 2017 14:51
dajamanté skrev :
Smutstvätt skrev :


Om vi däremot kombinerar dessa vet vi att 22 lediga skåp motsvarar en fjärdedel av skåpen. 

Förlåt jag är fortfarande inte med. Hur kan 22 motsvara en 1/4e del?

Påstående 2 ger att 3/4 del är upptagna om man tar +18 skåp, men vad menas med det? Är det inte alla skåp som var upptagna mellan 19 och 19:30?

Uppgift två ger oss att när ytterligare arton skåp är upptagna (19:30) är tre fjärdedelar upptagna. Vid samma tid är 22 skåp lediga enligt (1). Då måste 22 lediga vara en fjärdedel av det totala antalet. 

dajamanté 5139 – Fd. Medlem
Postad: 13 okt 2017 17:19

Men hur vet man att det är verkligen samma tid? Det är kanske en period 19/19:30 och  äta period 19:30/20?

Eller jag överboilar det?

Smutstvätt 25080 – Moderator
Postad: 13 okt 2017 19:01

Det står att de arton skåpen blev upptagna mellan 19:00 och 19:30. I ursprungsuppgiften har vi också fått informationen om att inga skåp blev lediga under samma tid. Alltså måste de tjugotvå skåpen vara en fjärdedel.

dajamanté 5139 – Fd. Medlem
Postad: 13 okt 2017 19:55

Tack :). Jag förstår inte texten riktigt bra men det är bara att hoppas att sådana frågor inte kommer ;)

Svara
Close