16 svar
134 visningar
ChristopherH behöver inte mer hjälp
ChristopherH 753
Postad: 18 okt 2022 19:36 Redigerad: 18 okt 2022 19:50

Momentacceleration/hastighet?

Hej bilden här: 

 

det står m (s)y axel och det betyder väl s-t diagram och inte v-t diagram? Och därför kan svaret inte bli m/s^2 eller hur

Alltså det jag måste göra är att ta reda på farten vid den blå punkten. Jag gjorde helt enkelt såhär

Gjorde en tangent vid 0.75s och 8.5 meter 

t1 = 0.75s och s1 = 8.5m

 

Beräknade med formel 

v=Delta S/Delta T 

v=8.5m/0.75s = 11.33m/s 

 

Jag antog också att det kanske är bra att avrunda till 11.5m/s 

 

eller att andvända felmarginal 11.33m/s (+-) 0.05

Men jag kunde inte bestämma mig vad som är rätt av alla 3 svaren. Eftersom jag har för mig att man inte måste använda felmarginal på diagram. Har inte ens för mig att man ska avrunda värdet. Men mitt huvud är helt fel programmerad så jag kan inte säga att jag har rätt.

 

Men det är inte enda saken jag är förvirrad av.

 

Anledningen jag postar är för att på s-t diagrammet på bilden s

 

er ut som en andragradsfunktion så hur kan man svara i m/s om hastigheten ändras? Måste jag omvandla det till en v-t diagram? Alltså typ till svaret 11.33m/s^2 

eller inte svaret 11.33m/s^2. Det måste väl då vara a=DeltaV/DeltaT = (11.33m/s) / 0.75s = 15.1 m/s^2

Mitt huvud är helt fel programmerad inser jag..

Jag gjorde en annan beräkning men det är väl inte momentacceleration men enbart medelacceleration eftersom det är två punkter antar jag. Det kan inte ha ngt med uppgiften att göra väl

a= (12m - 6m) / (1,2s - 0.4s) = 7.5m/s^2

Yngve 40279 – Livehjälpare
Postad: 18 okt 2022 21:13

Vi behöver vera hur uppgiften lyder.

Kan du ladda upp en bikd på uppgiften?

ChristopherH 753
Postad: 18 okt 2022 21:45

Det är i princip vad den lyder.

Den här bollen kastas rakt uppåt med farten ** man ska alltså ta reda på farten vid den punkten

Bubo 7347
Postad: 18 okt 2022 21:50

Du skriver att du ska ta reda på farten vid den blå punkten, så jag antar att det är själva uppgiften.

Du har tänkt en hel del bra. Diagrammet är mycket riktigt ett s-t diagram, med sträcka (som mäts i meter) på y-axeln och tid (som mäts i sekunder) på x-axeln.

En hastighet kan man säga beskriver "hur långt kommer jag på en viss tid", så det blir sträcka delat med tid. När du delar 8.5 meter med 0.75 sekunder kan vi visa det så här:

och då syns det nog att du har beräknat medelhastigheten under de första 0.75 sekunderna. 8.5 meter är HELA sträckan under HELA tiden 0.75 sekunder.

För att se hastigheten "just nu", momentanhastigheten, behöver vi titta på en mycket kortare tid, så kort som möjligt. Då ska vi hitta en tangent. En tangent är en linje som nuddar kurvan. Jag har ritat orange tangenter som nudddar kurvan i de gröna punkterna

Ser du skillnaden mellan hur man ritar för att få en medelhastighet mellan två tidpunkter och för att få momentanhastigheten i en tidpunkt?

Så småningom kommer du att behöva räkna fram tangenterna, men nu kan du nog bara rita och mäta i din ritade figur.

ChristopherH 753
Postad: 18 okt 2022 21:55
Bubo skrev:

Du skriver att du ska ta reda på farten vid den blå punkten, så jag antar att det är själva uppgiften.

Du har tänkt en hel del bra. Diagrammet är mycket riktigt ett s-t diagram, med sträcka (som mäts i meter) på y-axeln och tid (som mäts i sekunder) på x-axeln.

En hastighet kan man säga beskriver "hur långt kommer jag på en viss tid", så det blir sträcka delat med tid. När du delar 8.5 meter med 0.75 sekunder kan vi visa det så här:

och då syns det nog att du har beräknat medelhastigheten under de första 0.75 sekunderna. 8.5 meter är HELA sträckan under HELA tiden 0.75 sekunder.

För att se hastigheten "just nu", momentanhastigheten, behöver vi titta på en mycket kortare tid, så kort som möjligt. Då ska vi hitta en tangent. En tangent är en linje som nuddar kurvan. Jag har ritat orange tangenter som nudddar kurvan i de gröna punkterna

Ser du skillnaden mellan hur man ritar för att få en medelhastighet mellan två tidpunkter och för att få momentanhastigheten i en tidpunkt?

Så småningom kommer du att behöva räkna fram tangenterna, men nu kan du nog bara rita och mäta i din ritade figur.

Jag ser, det var lite det jag gjorde med mitt andra svar ''a= (12m - 6m) / (1,2s - 0.4s) = 7.5m/s^2''  men då skrev jag ''a'' kanske skulle skrivit v istället. 

 

Men då ritade jag inte 2 tangenter som du gjorde. Jag ritade nämligen bara en tangent där punkten ligger. Punkterna blev då (0.4s;6m) (1,2s;12m) = v = (12m-6) / (1,2-0.4s) = 6m/0.8s = 7.5m/s 

 

Tänker jag rätt?

Bubo 7347
Postad: 18 okt 2022 22:02

Nej, nu använder du ordet tangent felaktigt.

När du ritar en linje enligt

Punkterna blev då (0.4s;6m) (1,2s;12m) = v = (12m-6) / (1,2-0.4s) = 6m/0.8s = 7.5m/s

så använder du två punkter och beräknar medelhastigheten mellan t=0.4s och t=1.2s

 

Vi vill bara använda en punkt, den där t=0.75s, och få fram en rät linje som lutar på något sätt. Du har beräknat lutningen mellan två punkter, först mellan t=0s och t=0.75s, sedan mellan t=0.4s och t=1.2s.

Rita lite på fri hand så att det "ser bra ut", precis som jag gjorde i de gröna punkterna.

ChristopherH 753
Postad: 18 okt 2022 22:05 Redigerad: 18 okt 2022 22:06

Får man använda punkten (8.5m;0.75) för då gjorde jag bara helt enkelt 8.5/0.75= 11.33 m/s

 

Eller ska man hitta en punkt där den är minst över hela lutningen för att ta reda på farten vid (8.5m;0.75)

Yngve 40279 – Livehjälpare
Postad: 18 okt 2022 22:06
ChristopherH skrev:

Jag ritade nämligen bara en tangent där punkten ligger. Punkterna blev då (0.4s;6m) (1,2s;12m) = v = (12m-6) / (1,2-0.4s) = 6m/0.8s = 7.5m/s 

Drt kanske är rätt. Visa en bild där du har ritat in din tangent.

ChristopherH 753
Postad: 18 okt 2022 22:07
Yngve skrev:
ChristopherH skrev:

Jag ritade nämligen bara en tangent där punkten ligger. Punkterna blev då (0.4s;6m) (1,2s;12m) = v = (12m-6) / (1,2-0.4s) = 6m/0.8s = 7.5m/s 

Drt kanske är rätt. Visa en bild där du har ritat in din tangent.

Ok, jag ritade nämligen med en bläckpenna på datorn och suddade men kan skriva på papper snabbt

ChristopherH 753
Postad: 18 okt 2022 22:24 Redigerad: 18 okt 2022 22:25
Yngve skrev:
ChristopherH skrev:

Jag ritade nämligen bara en tangent där punkten ligger. Punkterna blev då (0.4s;6m) (1,2s;12m) = v = (12m-6) / (1,2-0.4s) = 6m/0.8s = 7.5m/s 

Drt kanske är rätt. Visa en bild där du har ritat in din tangent.

Där är den, fixade det på paint istället.  Man får nästan öppna den på en ny flik och zooma in. Den är väldigt liten

Yngve 40279 – Livehjälpare
Postad: 18 okt 2022 22:28

Ja, den ser bra ut. Momentanhastigheten vid tangeringspunkten är ungefär lika med tangentens lutning.

ChristopherH 753
Postad: 18 okt 2022 22:29 Redigerad: 18 okt 2022 22:29
Yngve skrev:

Ja, den ser bra ut. Momentanhastigheten vid tangeringspunkten är ungefär lika med tangentens lutning.

(0.4s;6m) (1,2s;12m) = v = (12m-6) / (1,2-0.4s) = 6m/0.8s = 7.5m/s 

Det är tangentens lutning då?

Aha jag förstår faktiskt lite bättre med ord

ChristopherH 753
Postad: 18 okt 2022 22:32

Men om det inte hade varit 2 punkter från tangenten och istället varit två punkter på själva linjen istället så skulle det då vara medelhastighet antar jag

Bubo 7347
Postad: 18 okt 2022 22:32 Redigerad: 18 okt 2022 22:33

(0.4s;6m) (1,2s;12m) = v = (12m-6) / (1,2-0.4s) = 6m/0.8s = 7.5m/s

Det är tangentens lutning då?

Aha jag förstår faktiskt lite bättre med ord

 

Kort svar: Ja.

Nu är allt rätt. Du har ritat en tangent, en rät linje som nuddar kurvan.

Tangentens lutning är då "kurvans lutning" i just den punkt vi är intresserade av.

(Det här förklaras bättre i senare mattekurser)

Snyggt jobbat.

Yngve 40279 – Livehjälpare
Postad: 18 okt 2022 22:34 Redigerad: 18 okt 2022 22:34
ChristopherH skrev:

(0.4s;6m) (1,2s;12m) = v = (12m-6) / (1,2-0.4s) = 6m/0.8s = 7.5m/s 

Det är tangentens lutning då?

Ja, det stämmer, men du ska skriva \approx, inte =

Bubo 7347
Postad: 18 okt 2022 22:35
ChristopherH skrev:

Men om det inte hade varit 2 punkter från tangenten och istället varit två punkter på själva linjen istället så skulle det då vara medelhastighet antar jag

Just det.

Två punkter på själva linjen betyder att du har valt två tidpunkter med de sträckor som tillhör just de tidpunkterna.

Från tangenten kan du välja vilka punkter du vill. Lutningen på tangenten blir ändå samma, för det är en rät linje.

ChristopherH 753
Postad: 18 okt 2022 22:35

Ja, men tack så mycket för hjälpen båda två. (:

Svara
Close