Minskning i procent
Nr.12
Borde inte ”funktionen” för det hela bli: x^24=0,05x
där x är mängden radioaktivtavfall från början, och 24 är antal timmar
Du har beräknad hur mkt det finns kvar efter 24 dagar.
edit
*om du räknar 0,95^24 får du hur mkt det finns kvar efter 24 dagar om den förlorar 5% per dygn. tänkte fel innan
Borde inte ”funktionen” för det hela bli: x^24=0,05x
där x är mängden radioaktivtavfall från början, och 24 är antal timmar
Nej, det blir bara x24=0,05. Beräkna värdet på x och sätt in t=160 i formeln N=N0·xt för att få fram hur stor del av ämnet som finns kvar efter en minut, så kan du lätt räkna ut hur mycket som har försvunnit.
Fast jag skulle skriva den första ekvtationen som x60·24 istället och sedan sätta in t = 1. Det blir i alla fall precis samma svar i båda metoderna.
Förstår fortfarande inte riktigt, hur ser formeln ut? X^(24•60)=0,05 eller x^(24•60)=0,05x?
*edit
fick fram x nu. Men hur tar jag det vidare?
Det går precis lika bra att räkna i enheten timmar eller enheten minuter, det blir bara olika värden på x.
Om du har räknat ut x från formeln x24=0,05 skall du fortsätta genom att sätta in t = 1/60 i formeln y(t)=xt, presis som jag skrev igår (fast jag förenklade formeln lite idag). Då får du fram hur mycket av ämnet som finns kvar efter 1 minut, och då kan du beräkna hur mycket av ämnet som har sönderfallit på en minut.