Mattefysikprovet 2009 Q12
Hejsan,
Skulle jag kunna få hjälp med hur man ska tänka för att lösa den här uppgiften?
Du ska inte tänka cirkelrörelse. Föremålet skjuts radiellt rakt ut i rymden ifrån ytan av himlakroppen. Hur stort arbete krävs för att lyfta ett föremål från himlakroppens yta till ett så stort avstånd från himlakroppens yta att föremålet inte längre dras tillbaka pga himlakroppens gravitation.
Okej... men, jag förstår ändå inte hur jag ska ”lösa det”. Jag vet att arbetet är densamme som förändringen i energi, anar att det syftar på Ek i detta fallet. Vad gör jag sedan?
OK. Du kan tänka såhär:
Tyngdkraften som verkar på ett föremål m på avståndet r från masscentrum av jordklotet M är enligt Newtons gravitationslag
Arbetet som krävs för att lyfta föremålet från jordytan till ett avstånd ovanför jordytan är "arean under F-r-grafen", eller
Kommer du vidare?
RandomUsername skrev:
Precis! Men det kan vara nyttigt att förstå _varför_ flykthastigheten beräknas med ovanstående formel, så att man även kan lösa närbesläktade uppgifter.
Det har du rätt i :)
Jag klurar på det, känner förstås igen newtons gravitationslag men hänger inte med på hur man får in v?
RandomUsername skrev:
Oj, något tips på hur man klarar av att ta roten ur det talet i huvudet?
Edit: får det till 0,23 när jag gör det snabbt, det är helt okej! Behöver inget tips.
81/3,7 > 80/4 = 20.
Roten av 20 är större än 4 och mindre än 5.
Sedan som Pieter säger.