Matte 4 5000+: 4442
Hej.
Teorin är att (kvot) * (Faktor) = Polynom.
Detta formulerades på följande sätt.
Försöket är att lösa med hjälp av liggande stolen, men det anses vara bättre med just insättning av nollställen.
Hur ligger det till? Vad är bra att tänka på?
Vi vet att
Det innebär att
Denna likhet ska gälla för alla möjliga värden på , dvs även för .
Det innebär att
- Tänk nu att . Vad får då högerledet för värde? Vad innebär det för vänsterledet? Kan vi då säga något bestämt om ?
- Tänk nu istället att . Vad får då vänsterledet för värde? Vad innebär det för högerledet? Kan vi då säga något bestämt om ?
Yngve skrev:Vi vet att
Det innebär att
Denna likhet ska gälla för alla möjliga värden på , dvs även för .
Det innebär att
- Tänk nu att . Vad får då högerledet för värde? Vad innebär det för vänsterledet? Kan vi då säga något bestämt om ?
- Tänk nu istället att . Vad får då vänsterledet för värde? Vad innebär det för högerledet? Kan vi då säga något bestämt om ?
Menar du egentligen följande?
"Om q(a) = 0 så är HL = 0. Alltså måste även VL = 0. Alltså måste p(a) = 0. Alltså har Merhawi rätt"
I så fall är ditt resonemang rätt.
===========
Här förstår jag inte vad du gör och vad ditt resonemang går ut på.
Utgå istället från p(a) = (2a-1)q(a).
Om det nu gäller att p(a) = 0 så måste det även gälla att (2a-1)q(a) = 0. Men det behöver inte innebära att q(a) = 0. Det kan ju mycket väl vara så att 2a-1 = 0.