4 svar
326 visningar
Twoface behöver inte mer hjälp
Twoface 36 – Fd. Medlem
Postad: 5 maj 2017 08:54

Matematiks Modellering - Exponentialekvation eller differential Ekvation

Tjaba,

Finns någon matematisk anledning(Syfte) för när man modellerar verkligheten med en differential ekvation eller med en exponentiellt tillväxt(Exponentialekvation) ? Är något av de fel vid en viss modellering, är någon mer primitiv än den andra? 

Tänk nedan uppgift.

Jag tänkte mig först att det var samma matematik men olika delar på myntet.

Jag ställde upp dessa ekvationer:

(URSÄKTA MIN HANDSTIL)

Som ni ser har jag testat lösningen för båda modellering och de stämmer då x=10.Men ifall jag testar för större värden på x så börjar de olika modellerna avvika ganska rejält. 

Vad händer här?

Tack så mycket på förhand!

//FF

HT-Borås 1287
Postad: 5 maj 2017 09:01

En differentialekvation blir det när någon form av kontinuerlig förändring är relevant, och i många fall är lösningen till den en exponentialfunktion.

Smaragdalena 80504 – Avstängd
Postad: 5 maj 2017 09:57

e0,008 = 1,008, så ni är helt överens. Eftersom tillväxthastigheten är angiven med 1 värdesiffra får man acceptera skillnader i n-te decimalen.

Twoface 36 – Fd. Medlem
Postad: 25 maj 2017 14:52

@smaragdalena Menar du att båda sätten är korrekta? Har du någon tumregel när det gör skillnad?

Smaragdalena 80504 – Avstängd
Postad: 25 maj 2017 15:53

På b-uppgiften, när det sker en nettoinvandring också, funkar inte "din" metod, utan då behöver man "räkna med hela diffekvationen". Så som uppgiften är formulerad, står det att man skall sätta upp en diffekvation och lösa den. Då får man fram tillväxtfaktorn e0,008 = 1,008. Om jag bara skulle lösa uppgiften (om det inte stod något om diffekvation) skulle jag spontant sätta tillväxtfaktorn till 1,008, precis som du gjorde.

Svara
Close