2 svar
370 visningar
#älskamat behöver inte mer hjälp
#älskamat 105
Postad: 3 sep 2021 16:33

Matematik 5000+ 4 kapitel 1 uppgift 1160 , ekvation sin 3v = c

Hej!

Uppgiften 1160 lyder: Ekvationen sin 3v = c har en lösning v = a. Bestäm övriga lösningar uttryckt i a.

Har redan tittat på den andra tråden med samma fråga men förstår fortfarande inte. Har försökt tänka ut de 2 lösningarna på sin 3v = c men förstår inte vart v försvinner när svaret ska bli 3v=a + n ×360°. Kan någon snalla förklara detta ? 

 

Tack på förhand!

Skaft 2373 – F.d. Moderator
Postad: 3 sep 2021 19:47

Vet inte vad du menar med att "v försvinner", men såhär tänker jag. Om man börjar lösa ekvationen sin(3v)=c\sin(3v) = c som vanligt (ta arcsin av båda led, lägg på perioder, och kom ihåg de som finns på motsatta sidan av enhetscirkeln) får man att:

3v=arcsin(c)+360°n3v = \arcsin(c) + 360^\circ n (hälften av alla lösningar)

3v=180°-arcsin(c)+360°n3v = 180^\circ - \arcsin(c) + 360^\circ n (andra hälften)

Dividera på 3 så får du fram v:

v=arcsin(c)3+120°nv=60°-arcsin(c)3+120°nv = \frac{\arcsin(c)}{3} + 120^\circ n \\ v = 60^\circ - \frac{\arcsin(c)}{3} + 120^\circ n

En av alla dessa möjliga v:n döper vi till a. Det spelar ingen roll vilken. För enkelhetens skull låter vi vinkeln i fråga vara den vi får om sätter in n=0 i den första ekvationen, så att a=arcsin(c)3a = \frac{\arcsin(c)}{3}. Då substituerar vi helt enkelt in det och får svaren:

v=a+120°nv=60°-a+120°nv = a + 120^\circ n \\ v = 60^\circ - a + 120^\circ n

#älskamat 105
Postad: 4 sep 2021 13:28 Redigerad: 4 sep 2021 13:31

Menade att c försvinner.

Jahaaa, okej då förstår jag.

Tack så mycket för hjälpen.

Svara
Close