Massan hos en atom omedelbart efter absorptionen av en foton
En atom i vila, vars massa är m, uppfångar en foton med energin E . Hur stor massa har atomen omedelbart därefter?
Så här har jag löst uppgiften:
Med hjälp av "tringelmetoden" ska vi kunna räkna ut massan efter absorptionen:
(E)2=(E0)2+(pc)2 (*)
Rörelsemängden har jag räknat på följande sätt:
pföre=pefterpfoton+patom.1=patom.2patom.1=0 eftersom atomen är i vila före absorptionen.pfoton=Efotonc patom.2=pfoton=Efotonc
Nu sätter jag in detta uttryck för rörelsemängden i sambandet (*):
(m´c2)2=(mc2)2+(Ecc)2 , m´=massan efter absorptionenefter förenkling: m´=m√1+(Emc2)2
Men i facit står det nånting annat:
m´=m√1+2Emc2
Varför blir det så?!
Tack på förhand!
Rörelsemängd resonemang korrekt.
Den relationen som du kallar "tringelmetoden" är en relation mellan totalenergin och rörelsemängden samt viloenergin i relativistiska sammanhang. Jmfr totala energin = potentiell energi + rörelseenergi
Totala energin konserveras innan och efter fotonabsorptionen.
Innan mc2+Efoton ditt E i ekvationen - totala energin. Denna summa ska kvadreras vilket ger Vänster led: m2c4+2mc2Efoton+E2foton
Efter / Höger led (m´c2)2+(patom2c)2
E (enligt uppgift)=Efoton=patom2c
Tredje termen i Vänster led går bort mot andra termen i Höger led
Och du kan lösa ut m´ från Vänster led och får facits svar
PeterG skrev:Rörelsemängd resonemang korrekt.
Den relationen som du kallar "tringelmetoden" är en relation mellan totalenergin och rörelsemängden samt viloenergin i relativistiska sammanhang. Jmfr totala energin = potentiell energi + rörelseenergi
Totala energin konserveras innan och efter fotonabsorptionen.
Innan mc2+Efoton ditt E i ekvationen - totala energin. Denna summa ska kvadreras vilket ger Vänster led: m2c4+2mc2Efoton+E2foton
Efter / Höger led (m´c2)2+(patom2c)2
E (enligt uppgift)=Efoton=patom2c
Tredje termen i Vänster led går bort mot andra termen i Höger led
Och du kan lösa ut m´ från Vänster led och får facits svar
Intressant! Nu har jag lärt mig nånting nytt. Tack!