4 svar
105 visningar
Outligger behöver inte mer hjälp
Outligger 2 – Fd. Medlem
Postad: 27 dec 2020 14:57 Redigerad: 27 dec 2020 15:00

Massa på rotationskropp

Uppgiften lyder

"En rak cirkulär kon med höjden 2m och radien 1m har spetsen nedåt och är fylld med en vätska. I ett plant snitt parallellt med konens bottenyta och på avståndet x m från konens spets är vätskans densitet (10-x^2) kg/m^3. Bestäm vätskans totala massa"

Jag vet hur man löser den med hjälp av likformighet, att radien vid höjden x kan uttryckas som x/2 osv. Det jag tänkte är, borde det inte också gå att lösa uppgiften genom att se konen som en rotationskropp av kurvan (1-x/2)? 

Min lösning är nedan, svaret blir fel (Ska vara 76pi/15)

Däremot råkade jag tidigare skriva x^3 / 3 istället för x^3 / 2 i det sista steget av integralen, och då blir svaret rätt.. Hur kan det komma sig? Ren slump?Varför verkar den här tekniken inte fungera?

PATENTERAMERA Online 5987
Postad: 27 dec 2020 15:11

x skall ju vara avståndet från konens spets, inte avståndet från konens bas.

Outligger 2 – Fd. Medlem
Postad: 27 dec 2020 15:15

Ahh, då blir funktionen x/2 också ja.. Tackar!!

Smaragdalena 80504 – Avstängd
Postad: 27 dec 2020 15:23

Om jag tolkar det du har skrivit rätt, så har du en annan densitetsfördelning än vad det är i uppgiften. I uppgiften är den tyngsta vätskan i konens spets. Du verkar ha det tvärtom. (Med andra ord: Det står i uppgiften att vätskans densitet är 10-x2 kg/m3 på avståndet x från konens spets. Då måste x vara 0 i konens spets, och så har du inte ritat det.)

jacobaren 6 – Fd. Medlem
Postad: 27 dec 2020 15:25

Titta noggrant på hur du ritat figuren och läs igenom meningen "på avståndet x m från konens spets är vätskans densitet (10-x2) kg/m3". Jag har inte kontrollräknat ännu, men det borde bli rätt.

Svara
Close