14 svar
66 visningar
Urboholic behöver inte mer hjälp
Urboholic 150
Postad: 10 apr 2023 13:11 Redigerad: 10 apr 2023 13:28

mängder

det finns en mängd jag brukar ha lite svårt för och jag misstänker jag gör något i min beräkning som inte är tillåtet.

om vi har mängden M1={(x,y);x2-y20} då försöker jag skriva om mängden till y ±x men detta leder ju till att y  x, och y -x vilket ju är felaktigt då det är området mellan linjerna som är själva mängden.
men eftersom att man inte kan göra så i detta fallet hur ska man då tänka? för att lösa uppgiften ska man då bara testa lite värden i grafen för att se vad som ger rätt mängd? 

Laguna Online 30472
Postad: 10 apr 2023 13:33

Vad är uppgiften?

Mohammad Abdalla 1350
Postad: 10 apr 2023 13:33

- Hur fick du olikheten x-y20  till  y±x ????

- Tips: Börja med att rita parabeln x-y2=0. Alla punkter som ligger på parabeln gör att olikhetens VL = 0, vilket betyder att de är lösningar till olikheten, och sen alla punkter som ligger inuti parabeln är också lösningar till olikheten.

Svar: Mängden M1 är alla punkter som ligger inuti parabeln (x-y2=0) inklusiv själva parabeln.

Algebraiskt kan du göra så här:

x-y20 xy2 y2x  -x yx (-x y0  eller  0yx )

Urboholic 150
Postad: 10 apr 2023 13:34

bara att man ska rita följande mängd i R^2

Urboholic 150
Postad: 10 apr 2023 13:38

mängden skulle vara x2-y20  jag hade skrivit fel mängd först, jag han ändra innan någon hade skrivit nått men du kanske missade det :)  

Laguna Online 30472
Postad: 10 apr 2023 13:40

Jag skulle skriva om det till x2 > y2 och sedan |x| > |y|.

Mohammad Abdalla 1350
Postad: 10 apr 2023 13:43 Redigerad: 10 apr 2023 13:52

du kan använda min metod i inlägg #3 och göra likadant fast med x2-y20.

x-y2≥0 utgör en parabel.

Vad är x2-y2=0  för figur?

Urboholic 150
Postad: 10 apr 2023 13:55 Redigerad: 10 apr 2023 13:55

jag är inte helt säker på vad det blir för figur tycker det kan vara lite förvirrande att alla figurer ändra beroende på om du är lika med 1, -1, 0 osv men hade den varit lika med -1/1 så hade det ju varit en hyperbolisk cylinder?
så eftersom att värdet är noll så borde det vara något liknande fast med bara raka linjer så en kon från båda sidor antar jag.
men jag förstår all du gjort i #3 det enda jag blir lite vilse på är hur du skriver om olikheten till -xyx?

jag tänker ju att när du skriver i detta fallet y2x y ±x och det är där jag fastnar.

är det för att jag måste skriva om det till absolutbelopp som @laguna skriver för då får jag ju 4a olikheter och då stämmer mängden ju överens bra med mängen från svaret :)? 

Mohammad Abdalla 1350
Postad: 10 apr 2023 14:04

Mängden är i R2 så den kan inte vara en tredimensionell figur.

För att du ska förstå olikheten y2x  (Observera att x måste vara positivt, annars saknar olikheten lösningar)ta ett exempel.

y24Vilka värden på y gör att olikheten stämmer, tycker du?

Urboholic 150
Postad: 10 apr 2023 14:11

sant, då blir väl bara en spets med raka linjer som samlas i origo i R^2.
då blir det alla värden mellan -2 och 2 som uppfyller kravet på olikheten y24

Mohammad Abdalla 1350
Postad: 10 apr 2023 14:19
Urboholic skrev:

sant, då blir väl bara en spets med raka linjer som samlas i origo i R^2.
då blir det alla värden mellan -2 och 2 som uppfyller kravet på olikheten y24

Stämmer bra!

Är du med nu att olikheten y2x  är ekvivalent med -xyx

Så ekvationen x2-y2=0 utgör en union av de två linjerna (y=x och y=-x) och detta ger att lösningen till olikheten  x2-y20 är det området som ligger inuti linjerna inklusive själva linjerna  (y=x och y=-x).

Urboholic 150
Postad: 10 apr 2023 14:24

yes nu är jag med :)  
tack för hjälpen :)

Mohammad Abdalla 1350
Postad: 10 apr 2023 14:26

Bra!

Tack själv!

Fråga till dig:

Vad händer om olikheten ser ut så här istället

x2-y21?

Urboholic 150
Postad: 11 apr 2023 14:24

då blir det ju två parabler fast som är vridna och själva mängden är alla värden som är mellan den vänster och högra parabeln?

Mohammad Abdalla 1350
Postad: 13 apr 2023 10:34
Urboholic skrev:

då blir det ju två parabler fast som är vridna och själva mängden är alla värden som är mellan den vänster och högra parabeln?

Bra tänkt, men en hyperbel består inte av två parabler, även om de ser ut som parabler, är du med på detta?

Svara
Close