2 svar
711 visningar
tindra03 behöver inte mer hjälp
tindra03 370
Postad: 26 mar 2021 15:58 Redigerad: 26 mar 2021 16:01

Lös fjärdegradsekvationen. En rot är rent imaginär

Hej! Jag gör följande uppgift

Jag vet att den rent imaginära rotens konjugat också är rot, och jag utför en polynomdivision på dessa. Jag får fram en andragradsekvation (vilken utgör de andra två rötterna). Jag får också ut en rest som jag vet ska bli noll. Här fastnar jag, hur löser jag vidare?

 

Jag har två olika försök, varav försöket ovanför strecket är mitt första, och försöket under linjen är detsamma, men jag har faktoriernat ut z^2)

Truppeduppe 137
Postad: 26 mar 2021 17:36

Hej!

Jag skulle gissa mig fram till en rot innan polynomdivision, men vi har ju ledningen att en rot är rent imaginärt.

Vi testar roten ai.

In i ekv:

(ai)4+6(ai)3+13(ai)2+18(ai)+30=0 ger två stycken ekvationer ty realdel och imaginärdel ska både bli noll.

Re: a4-13a2+30=0

Im: -6a3+18a=0 => -a2+3=0 => a=(+-)sqrt(3).

Vi ser att talet z1=sqrt(3)i uppfyller ekvationen, vilket gör att talet z2=-sqrt(3)i också uppfyller ekvationen.

Detta ger att man kan dividera med (z-z1)(z-z2)=z2+3.

henrikus 662 – Livehjälpare
Postad: 26 mar 2021 17:45

Sätt z = ai och lös ekvationen med avseende på a.

Svara
Close