55 svar
572 visningar
Katarina149 behöver inte mer hjälp
Katarina149 7151
Postad: 25 aug 2021 20:50

Lös ekvationen

Lös ekvationen 

sinx = sin x/2

Hej. Jag behöver ha hjälp med den här ekvationen. Så långt kommer jag sen fastnar jag.

Hilda 367 – Livehjälpare
Postad: 25 aug 2021 20:53

Det är en konstig ekvation att lösa. Det är bara värdet x=0 som uppfyller ekvationen. Det är ungefär som ekvationen y = 2y, som ju också bara har lösningen 0. 

Dr. G Online 9505
Postad: 25 aug 2021 20:58

(Det finns fler lösningar än x = 0.)

Bra idé att använda formeln för dubbla vinkeln, men du får skriva om VL som

sinx=2sinx2cosx2\sin x =2\sin \frac{x}{2} \cos \frac{x}{2}

Faktorisera och använd nollproduktsmetoden. 

Katarina149 7151
Postad: 25 aug 2021 21:03

Hur kan jag bryta ut/ faktoriers 

sin x=2sinx/2 cosx/2?

Smaragdalena 80504 – Avstängd
Postad: 25 aug 2021 21:48

Du började med sin(x)=sin(x2)\sin(x)=\sin(\frac{x}{2})

Använd formeln för dubbla vinkeln på VL så får du

2sin(x2)cos(x2)=sin(x2)2\sin(\frac{x}{2})\cos(\frac{x}{2})=\sin(\frac{x}{2})

Subtrahera sin(x2)\sin(\frac{x}{2}) från båda sidor, så att HL = 0.

Bryt ut sin(x2)\sin(\frac{x}{2}) i VL

Använd nollproduktmetoden.

Katarina149 7151
Postad: 25 aug 2021 22:20 Redigerad: 25 aug 2021 22:20

Nu hänger jag inte med. Vilken sida (HL eller VL) i  ekvationen ”sin(x)=sin(x/2)” är det vi skriver om mha formeln för dubbla vinkeln?  Det gick lite för fort kan du  förklara mer detaljerat  istället

Smaragdalena 80504 – Avstängd
Postad: 25 aug 2021 22:26

Använd formeln för dubbla vinkeln på VL så får du...

Högerledet är ju oförändrat. Sedan har jag inte gjort resten av uppgiften, utan berättat vad du skall göra. Försök!

Jan Ragnar 1948
Postad: 26 aug 2021 01:30

Yngve 40600 – Livehjälpare
Postad: 26 aug 2021 06:59
Katarina149 skrev:

Nu hänger jag inte med. Vilken sida (HL eller VL) i  ekvationen ”sin(x)=sin(x/2)” är det vi skriver om mha formeln för dubbla vinkeln?  Det gick lite för fort kan du  förklara mer detaljerat  istället

Vi skriver om vänsterledet genom att vi där byter ut sin(x) mot 2sin(x/2)cos(x/2). Är du med på att det bytet går att göra enligt formeln för dubbla vinkeln?

Ekvationen blir då 2sin(x/2)cos(x/2) = sin(x/2)

Katarina149 7151
Postad: 26 aug 2021 16:37

Är du med på att det bytet går att göra enligt formeln för dubbla vinkeln?” 

Svar : Nej det är jag inte med på. Jag förstår inte hur bytet går till 

Katarina149 7151
Postad: 26 aug 2021 16:55

Jag tror att jag är på rätt spår

Dr. G Online 9505
Postad: 26 aug 2021 17:14 Redigerad: 26 aug 2021 17:14

Du behöver hitta alla lösningar till

cosx2=12\cos \frac{x}{2}=\frac{1}{2}

Du har även förkortat bort faktorn sin(x/2). Det får du bara göra om den faktorn inte är 0. 

Katarina149 7151
Postad: 26 aug 2021 17:49

Jag förstår inte vad du menar..

Yngve 40600 – Livehjälpare
Postad: 26 aug 2021 17:54
Katarina149 skrev:

Är du med på att det bytet går att göra enligt formeln för dubbla vinkeln?” 

Svar : Nej det är jag inte med på. Jag förstår inte hur bytet går till 

Du vet att sin(2v) = 2sin(v)cos(v)

Om du nu kallar 2v för x så är ju v lika med x/2.

Det betyder att sin(x) = 2sin(x/2)cos(x/2)

Men du kom ju på det själv genom att använda additionsformeln istället.

Yngve 40600 – Livehjälpare
Postad: 26 aug 2021 17:57
Katarina149 skrev:

Jag förstår inte vad du menar..

Det är nog enklare att göra så här: Du har ekvationen

2sin(x/2)cos(x/2) = sin(x/2)

Subtrahera sin(x/2) från båda sidor:

2sin(x/2)cos(x/2) - sin(x/2) = 0

Faktorisera vänsterledet:

sin(x/2)(2cos(x/2) - 1) = 0

Enligt nollproduktmetodrn så har denna ekvation lösningarna

  • sin(x/2) = 0
  • 2cos(x/2) - 1 = 0
Katarina149 7151
Postad: 26 aug 2021 18:03 Redigerad: 26 aug 2021 18:03

Så långt är jag med den fastnar jag

Katarina149 7151
Postad: 26 aug 2021 18:03
Yngve skrev:
Katarina149 skrev:

Är du med på att det bytet går att göra enligt formeln för dubbla vinkeln?” 

Svar : Nej det är jag inte med på. Jag förstår inte hur bytet går till 

Du vet att sin(2v) = 2sin(v)cos(v)

Om du nu kallar 2v för x så är ju v lika med x/2.

Det betyder att sin(x) = 2sin(x/2)cos(x/2)

Men du kom ju på det själv genom att använda additionsformeln istället.

Jag hängde inte med på det du skrev här

Om du nu kallar 2v för x så är ju v lika med x/2.

Det betyder att sin(x) = 2sin(x/2)cos(x/2)”

Yngve 40600 – Livehjälpare
Postad: 26 aug 2021 18:11 Redigerad: 26 aug 2021 18:12
Katarina149 skrev:

Så långt är jag med den fastnar jag

Vilket/vilka av följande steg är du inte med på?

  1. Ekvationen är sin(x) = sin(x/2)
  2. Vänsterledet kan skrivas 2sin(x/2)cos(x/2)
  3. Ekvationen kan då skrivas 2sin(x/2)cos(x/2) = sin(x/2)
  4. Om vi subtraherar sin(x/2) från båda sidor får vi 2sin(x/2)cos(x/2) - sin(x/2) = 0
  5. Om vi faktoriserar vänsterledet får vi sin(x/2)(2cos(x/2) - 1) = 0
  6. Enligt nollproduktmetoden så måste nu antingen sin(x/2) = 0 eller 2cos(x/2) - 1 = 0
Katarina149 7151
Postad: 26 aug 2021 18:28 Redigerad: 26 aug 2021 18:29

Punkt två är jag inte med på. Ska man inte skriva om VL till sin(x/2 + x/2) = sin(x/2)*cos(x/2)+cos(x/2)+sin(x/2)?

som jag gjort här nedan?

Katarina149 7151
Postad: 26 aug 2021 18:51

Jag är med på uträkningen framtills man ska använda nollproduktsmetoden. Där fastnar jag 

Yngve 40600 – Livehjälpare
Postad: 26 aug 2021 19:22 Redigerad: 26 aug 2021 19:26

Det är rätt så långt.

Tänk nu på att

  • ekvationen sin(v) = a har lösningarna a = arcsin(v) + n*360° och a = 180° - arcsin(v) + n*360°
  • ekvationen cos(w) = b har lösningarna b = arccos(w) + n*360° och b = -arccos(w) + n*360°

Använd gärna enhetscirkeln för att visualisera dessa lösningar.

Katarina149 7151
Postad: 26 aug 2021 20:45

Men jag förstår inte riktigt hur jag ska fortsätta min uträkning från steg 5 på min bild

Yngve 40600 – Livehjälpare
Postad: 26 aug 2021 21:56

Fall 1:

Ekvationen sin(x/2) = 0 har lösningarna x/2 = arcsin(0) + n*360° och x/2 = 180° - arcsin(0) + n*360°. Lös ut x och ersätt arcsin(0) med det exakta värdet.

Fall 2:

Ekvationen cos(x/2) = 1/2 har lösningarna x/2 = arccos(1/2) + n*360° och x/2 = -arccos(1/2) + n*360°. Lös ut x och ersätt arccos(1/2) med det exakta värdet.

Katarina149 7151
Postad: 26 aug 2021 22:18

Jag förstår inte hur du löser ekvationen 

sin(x/2)=0

creamhog 286
Postad: 26 aug 2021 22:47

Vilken del förstår du inte? Kan du lösa t.ex. sinx=0? Du kan läsa mer om trigonometriska ekvationer i matteboken,

det finns ett exempel där på sin5x=1/2 som kanske kan hjälpa dig. 

Yngve 40600 – Livehjälpare
Postad: 26 aug 2021 22:52
Katarina149 skrev:

Jag förstår inte hur du löser ekvationen 

sin(x/2)=0

Sätt v = x/2 och använd enhetscirkeln för att hitta lösningar till sin(v) = 0.

När du har dessa värden på v så kan du hitta motsvarande värden på x genom att lösa ut x ur ekvationen x/2 = v.

Katarina149 7151
Postad: 27 aug 2021 10:44

Är då v inte 90 grader. Alltså att sin(90)=0?

Yngve 40600 – Livehjälpare
Postad: 27 aug 2021 10:49

Nej du blandar ihop det.

sin(90°) = 1 

cos(90°) = 0

Katarina149 7151
Postad: 27 aug 2021 12:29

Hur kan sin(90) vara lika med 1? 
Varför är cos(90)=0? Kan du förklara det mha en enhetscirkel? Då kan jag förstår bättre 

Yngve 40600 – Livehjälpare
Postad: 27 aug 2021 12:53

Det är bättre om du gör det själv, med hjälp av följande instruktioner:

  1. Rita en enhetscirkel.
  2. Rita en radie i cirkeln.
  3. Kalla (moturs)vinkeln mellan radien och den positiva delen av den horisontella axeln för v.
  4. Den punkt på cirkeln som radien nuddar har nu koordinaterna (cos(v), sin(v)).
  5. Vilka koordinater har den punkten om vinkeln är 0°?
  6. Vilka koordinater har den punkten om vinkeln är 90°?
  7. Vilka koordinater har den punkten om vinkeln är 180°?
  8. Vilka koordinater har den punkten om vinkeln är 360°?
Katarina149 7151
Postad: 27 aug 2021 13:44

Okej det här är min ritade bild. När vinkeln är 0 grader så är koordinaterna (cos v , 0) .  När vinkeln är 90 grader är koordinaterna (0,sin(v)). när vinkeln är 180 grader så är koordinaterna (-cos v,0). När vinkeln är 360 grader så är koordinaterna (cos v,sin v)

Yngve 40600 – Livehjälpare
Postad: 27 aug 2021 13:50 Redigerad: 27 aug 2021 15:35

Bra. Jag förtydligar. Eftersom cirkeln har radien 1 så gäller följande:

  1. När vinkeln är 0° så är koordinaterna (cos(0°), sin(0°). I enhetscirkeln ser du att denna punkt har koordinaterna (1,0) vilket innebär att cos(0°) = 1 och att sin(0°) =0.
  2. När vinkeln är 90° så är koordinaterna (cos(90°), sin(90°). I enhetscirkeln ser du att denna punkt har koordinaterna (0,1) vilket innebär att cos(90°) = 0 och att sin(90°) =1.
  3. När vinkeln är 180° så är koordinaterna (cos(180°), sin(180°). I enhetscirkeln ser du att denna punkt har koordinaterna (-1,0) vilket innebär att cos(180°) = -1 och att sin(180°) =0.
  4. När vinkeln är 270° så är koordinaterna (cos(270°), sin(270°). I enhetscirkeln ser du att denna punkt har koordinaterna (0,-1) vilket innebär att cos(270°) = 0 och att sin(270°) =-1.
  5. När vinkeln är 360° så är koordinaterna (cos(360°), sin(360°). I enhetscirkeln ser du att denna punkt har koordinaterna (1,0) vilket innebär att cos(360°) = 1 och att sin(360°) = 0.

Hängde du med på det?

Katarina149 7151
Postad: 27 aug 2021 13:53 Redigerad: 27 aug 2021 13:54

Japp det här hängde jag med på. Men jag har fortfarande fastnat på den här frågan 

Yngve 40600 – Livehjälpare
Postad: 27 aug 2021 15:44 Redigerad: 27 aug 2021 15:45

Du ska lösa ekvationen sin(x/2) = 0.

Jag föreslår att du kallar x/2 för v.

Du ska då lösa ekvationen sin(v) = 0.

 Kan du göra det?

Ta hjälp av enhetscirkeln eller den lista jag skrev i mitt förra svar.

Katarina149 7151
Postad: 27 aug 2021 16:20 Redigerad: 27 aug 2021 16:20

När sinus är 0 är vinkeln v=90 grader. Men sen blir det krångligt. Hur ska jag tänka? Sin(90/2)=0 elr ska det var sin(180/2)=0?

Yngve 40600 – Livehjälpare
Postad: 27 aug 2021 16:52 Redigerad: 27 aug 2021 16:54

Nej sin(90°) är lika med 1, inte 0.

Däremot så gäller att sin(0°) är lika med 0.

Det betyder att ekvationen sin(v) = 0 har lösningarna v1 = 0° + n•360° och v2 = 180° + n•360°.

Är du med på det?

Katarina149 7151
Postad: 27 aug 2021 17:58 Redigerad: 27 aug 2021 18:01

Okej. Detta är så långt som jag har hängt med och förstått. Därefter fastnar jag.


Det är sista steget när jag ska förenkla uttrycken mha nollproduktsmetoden som jag fastnar.

Yngve 40600 – Livehjälpare
Postad: 27 aug 2021 18:06

Förstår du nollproduktmetoden, dvs förstår du att lösningarna till ekvationen sin(x/2)(2cos(x/2)-1) = 0 fås genom att lösa de båda ekvationerna din(x/2) = 0 och 2cos(x/2) - 1 = 0?

Katarina149 7151
Postad: 27 aug 2021 18:07 Redigerad: 27 aug 2021 18:08

Jag vet inte hur jag ska lösa ekvationen sin(x/2)=0 

eller den andra ekvationen under 2cosx/2 - 1 =0

jag kan nollproduktsmetoden. Men det här med sinus och cosinus i en ekvation är nytt för mig. Därav så är jag lite förvirrad vid uträkningarna.

Yngve 40600 – Livehjälpare
Postad: 27 aug 2021 18:10
  1. Du ska lösa ekvationen sin(x/2) = 0.
  2. Om du kallar x/3 för v så lyder ekvationen sin(v) = 0.
  3. Den ekvationen har lösningarma v = 0° + n•360° och v = 180° + n•360°.

Vad av detta fastnar du på?

Katarina149 7151
Postad: 27 aug 2021 18:12 Redigerad: 27 aug 2021 18:13

Steg 3 fastnar jag på. Jag hänger inte med helt och hållet

Yngve 40600 – Livehjälpare
Postad: 27 aug 2021 23:07

För att lösa ekvationen sin(v) = 0 kan du använda enhetscirkeln.

  1. Rita enhetscirkeln.
  2. En godtycklig punkt på enhetscirkeln har koordinaterna (cos(v), sin(v)).
  3. De punkter som uppfyller villkoret sin(v) = 0 har alltså koordinaterna (cos(v), 0).
  4. Det betyder att den vertikala koordinaten är lila med 0.
  5. Det betyder att punkten ligger på den horisontella axeln.
  6. Markera de punkter på enhetscirkeln som ligger på den horisontella axeln.
  7. Rita radier från origo till dessa punkter.
  8. Motursvinkeln mellan den positiva horisontella axeln och radien är lika med vinkeln v.

Visa din figur.

Katarina149 7151
Postad: 28 aug 2021 00:11

Det enda jag förstod var det här :

Yngve 40600 – Livehjälpare
Postad: 28 aug 2021 01:06

OK, vi kallar nu koordinataxlarna x och y.

Koordinaterna för en punkt på enhetscirkeln kan då antingen skrivas (x, y) eller (cos(v), sin(v)).

Det betyder att x = cos(v) och y = sin(v).

En punkt som uppfyller sin(v) = 0 har alltså y-koordinaten lika med 0.

Vilka två punkter på enhetscirkeln har y-koordinaten 0?

Katarina149 7151
Postad: 28 aug 2021 07:21

Sin(0)=0

cos(90)=0

Yngve 40600 – Livehjälpare
Postad: 28 aug 2021 08:52 Redigerad: 28 aug 2021 08:52

Nej jag menar att du i koordinatform ska ange de två punkter på enhetscirkeln som har y-koordinaten 0.

Exempel:

Punkten (1, 0) ligger på cirkeln och har y-koordinaten 0.

Villen är den andra punkten som har y-koordinaten 0?

Tips: Rita en enhetscirkel och hitta de två ställen där den skär x-axeln.

Katarina149 7151
Postad: 28 aug 2021 09:04 Redigerad: 28 aug 2021 09:05

(-1,0) och (1,0)

Yngve 40600 – Livehjälpare
Postad: 28 aug 2021 09:23

Bra det stämmer.

Rita nu en radie R1 från origo till punkten (-1,0) och en annan radie R2 från origo till punkten (1,0).

  1. Vinkeln mellan positiva x-axeln och R1 har sinusvärdet 0. Vilken är denna vinkel?
  2. Vinkeln mellan positiva x-axeln och R2 har sinusvärdet 0. Vilken är denna vinkel?
Katarina149 7151
Postad: 28 aug 2021 10:13

Jag hänger inte med på det här ”Vinkeln mellan positiva x-axeln och R1 har sinusvärdet 0. Vilken är denna vinkel?”

Yngve 40600 – Livehjälpare
Postad: 28 aug 2021 11:53

Du har ritat R1 och R2 fel.

  • Markera punkterna (-1,0) och (1,0) i koordinatsystemet.
  • R1 ska gå från origo till punkten (-1, 0).
  • R2 ska gå från origo till punkten (1, 0).
  • Rita R1 och R2.
Katarina149 7151
Postad: 28 aug 2021 12:04 Redigerad: 28 aug 2021 12:04

Är det så du menar? 

Yngve 40600 – Livehjälpare
Postad: 28 aug 2021 12:56

Ja, fast du har bytt plats på R1 och R2.

Katarina149 7151
Postad: 28 aug 2021 13:04

Okej? Hur ska detta hjälpa mig för att lösa uppgiften?

Yngve 40600 – Livehjälpare
Postad: 28 aug 2021 14:49

Det ska hjälpa dig att förstå vilka vinklar v som har sinusvärdet 0, dvs det ska hjälpa dig att lösa ekvationen sin(v) = 0.

Vilket i sin tur leder fram till en del av lösningen till ursprungsekvationen. 

Katarina149 7151
Postad: 29 aug 2021 15:02 Redigerad: 29 aug 2021 15:02

Det känns inte roligt att jag har förstått hur man ska lösa ekvationen så att x blir ensamt

Yngve 40600 – Livehjälpare
Postad: 29 aug 2021 18:24

En sak i taget.

Vi har ännu inte hittat alla lösningar till ekvationen sin(v) = 0.

Svara
Close