4 svar
148 visningar
soobin behöver inte mer hjälp
soobin 322
Postad: 13 jan 2023 23:08 Redigerad: 13 jan 2023 23:09

Logaritm ekvation

god kväll!!!

jag har fått i uppgift att lösa en ekvation med logaritm, 

lg a^5 - lg a^3 = lg 10^-2

enligt loglagarna kan lg a^5 - log a^3 vara lika med lg (a^5/a^3) enligt potenslagarna blir log (a^2) kvar. 

Enligr facit är svaret 0,1 vilket låter rimligt .. men jag ver inte hur jag ska fortsätta efter att ha fått fram att lg a^2 = lg 10^-2. 

lg 10^-2 är lika med lg 0,01 eller hur? och tiologaritmen av det är -2? eller … enligt 10^x = y kan det inte vara lg 0,01 eftersom (10^-2) inte är i parantes?

jag kan nog förenkla lg a^2 vidare genom att sänka tvåan… 2 * lg a = lg 10^-2 … men efter det.. hur gör jag då? tacksam för hjälp!!

soobin 322
Postad: 13 jan 2023 23:11

kanske bör man dela båda sidor med 2 * log.. och då kvarstår a = lg 10^-2/lg 2 = 0,05 .. nejjjjjjj

naytte Online 5017 – Moderator
Postad: 13 jan 2023 23:17

Du får ekvationen a²=0.01.

soobin 322
Postad: 14 jan 2023 01:32

Ja det inser till och med jag … men hur ? går det att bara dividera bort lg från båda leden på det sättet?

naytte Online 5017 – Moderator
Postad: 14 jan 2023 01:35

Hur kan "till och med du" inse det om du inte förstår varför? Anledning är i alla fall att logaritmer är definierade på ett sådant sätt att om logba=logbc så gäller även att a=c.


Tillägg: 14 jan 2023 13:07

Så för att förtydliga "delar du inte bort" någonting. lg i uttrycket lga2 är ingen faktor.

Svara
Close