5 svar
81 visningar
TPMusk behöver inte mer hjälp
TPMusk 94
Postad: 9 nov 2022 20:51

Linjen L går genom origo och skär linjen y = 2x -3 för x = a där a > 3. Bestäm möjliga k-värden

Såhär har jag börjat, men jag vet inte om jag gjort rätt:

Låt L vara y = kx + m

y = 2x -3

y = kx + m

Om vi sätter in a = 3 får vi

y = 2(3) - 3 = 3

y = k * 3 + 0 = 3k

Då blir k > 1 men hur tar jag reda på det största möjliga k-värdet?

Smaragdalena 80504 – Avstängd
Postad: 9 nov 2022 20:59 Redigerad: 9 nov 2022 20:59

Välkommen till Pluggakuten!

Rita några linjer till med större k-värde. Till slut kommer inte linjen L att korsa linjen y. Vilket k-värde har linjen L då? (Vad händer om k blir ännu större?)

TPMusk 94
Postad: 9 nov 2022 21:55 Redigerad: 9 nov 2022 21:57
Smaragdalena skrev:

Välkommen till Pluggakuten!

Rita några linjer till med större k-värde. Till slut kommer inte linjen L att korsa linjen y. Vilket k-värde har linjen L då? (Vad händer om k blir ännu större?)

Hej, jag har gjort detta och fått att k inte kan överstiga 2. Tror du att det finns något algebraiskt sätt att ta reda på intervallet?

 

Har hittat ett "sätt" men är inte helt säker om det funkar för alla funktioner. Det jag gjorde var:

 

y = 2(3) vilket ger 6

y = k(3) vilket ger 3k

3k = 6

k = 2 

 

Jag tog alltså bort m-värdet och på så sätt få ut största möjliga k-värdet. Låter det rimligt och tror du att det funkar för alla möjliga funktioner?

Smaragdalena 80504 – Avstängd
Postad: 9 nov 2022 22:05

Om vi har två pinjer som är parallella kommer de inte att skära varandra. Vilket k-värde har en linje som är parallell med linjen y = 2x-3?

TPMusk 94
Postad: 9 nov 2022 22:08
Smaragdalena skrev:

Om vi har två pinjer som är parallella kommer de inte att skära varandra. Vilket k-värde har en linje som är parallell med linjen y = 2x-3?

k-värdet 2. Nu fattar jag. Så länge k-värdet är mindre än 2 kommer linjerna att korsa varandra. Då får man väl att 1< k < 2 ?

Smaragdalena 80504 – Avstängd
Postad: 9 nov 2022 22:42

Ja.

Svara
Close