Linjärkombination
Hejsan! En linjärkombination innebär ju att man ska kunna räkna ut en tredje variabel utifrån två andra variabler, men min fråga är varför kan inte alla tre variabler sedan användas i en multipel modell som förklaringsvariabler?
Tack på förhand!
Hej
Kanske missförstår jag frågan lite, men gissningsvis är det många som tycker att det i fallet du beskriver blir lite dumt att använda tre variabler i en modell där man skulle kunna "nöja" sig med två av dem. Den tredje blir liksom "onödig" och ställer nog mest till oreda om man vill använda sin modell.
Så, nog kanske man kan använda alla tre variabler i sin modell, men det lär knappast underlätta (snarare tvärtom).
Flummigt svar...
En linjärkombination är ju en summa av basvektorer som man multiplicerar med tal för att få en ny vektor. Säg då att du skriver en vektor som en linjärkombination av två andra vektorer. Om du nu vill skriva en ny vektor, men som linjärkombination av de tre vektorerna kommer ju den tredje egentligen bara bestå av de två första, så egentligen får vi bara en summa av de två vetkorerna.
Exempel:
v1 och v2 är alltså basvektorer, och u1 är en linjärkombination av dessa. O du nu försöker skriva en ny vektor u2 som en linjärkombination av v1 v2 och v3 kan du ju (i sista likheten) lika gärna skriva den som en linjärkombination av v1 och v2 endast. Så u1 är helt enkelt onödig, eftersom den bara bidrar lite mer med v1 och v2
Hej!
Säg att du har en multipel linjär regressionsmodell
där brustermen är normalfördelad. Om den förklarande variabeln är starkt korrelerad med och så kommer detta att orsaka att varianserna Error converting from LaTeX to MathML och Error converting from LaTeX to MathML för skattningarna och blir stora. Om man sedan testar hypoteserna att och är lika med noll så kommer dessa hypoteser inte att kunna förkastas, på grund av att teststatistikorna som används är kvoter med varianserna i nämnarna; detta trots att en visuell analys av och och indikerar ett tydligt linjärt mönster.
Genom att inkludera den starkt korrelerade i modellen har ett multikollinearitetsproblem uppstått, vilket yttrar sig i att den statistiska analysen motsäger den visuella analysen.
Albiki