5 svar
423 visningar
Tygpåse 23 – Fd. Medlem
Postad: 25 feb 2019 01:52

Linjär algebra - Linjär avbildning, ange matris

Låt F : R^3 - > R^3 vara en linjär avbildning. Vi säger att x avbildas på y, om y = F(x).

Ange matrisen för F om:

1) Vektorn (1,-2,1) avbilda på nollvektorn

2) Vektorerna (1,0,-1) och (0,1,0 avbildas på sig själva.

Har suttit med denna i 4 timmar nu och vet inte ens vart jag ska börja och vad som försiggår. 

Hjälp hade uppskattats! 

Smutstvätt 25071 – Moderator
Postad: 25 feb 2019 06:31

Titta på 2), där har du två egenvektorer. Eftersom de avbildas på sig själva har de även egenvärde ett. Hur blir då diagonaliseringen av matrisen? 

Tygpåse 23 – Fd. Medlem
Postad: 25 feb 2019 09:07
Smutstvätt skrev:

Titta på 2), där har du två egenvektorer. Eftersom de avbildas på sig själva har de även egenvärde ett. Hur blir då diagonaliseringen av matrisen? 

Blir väl en 3x3 matris med 1:or i diagonalen och resterande siffror är noll? 

Dr. G 9479
Postad: 25 feb 2019 10:26

Avbildningen är linjär. Du vet att

F(1,-2,1) = (0,0,0)

F(1,0,-1) = (1,0,-1)

F(0,1,0) = (0,1,0)

Ta fram avbildningarna F(1,0,0) och F(0,0,1) genom att använda linjäriteten, d.v.s

F(c1*x1 + c2*x2) = c1*F(x1) + c2*F(x2)

för alla vektorer x1 och x2 i R^3 och alla skalärer c1 och c2.

Tygpåse 23 – Fd. Medlem
Postad: 25 feb 2019 22:08
Dr. G skrev:

Avbildningen är linjär. Du vet att

F(1,-2,1) = (0,0,0)

F(1,0,-1) = (1,0,-1)

F(0,1,0) = (0,1,0)

Ta fram avbildningarna F(1,0,0) och F(0,0,1) genom att använda linjäriteten, d.v.s

F(c1*x1 + c2*x2) = c1*F(x1) + c2*F(x2)

för alla vektorer x1 och x2 i R^3 och alla skalärer c1 och c2.

 

Måste ha missat detta. Hur gör man det där? 

Dr. G 9479
Postad: 25 feb 2019 22:21

Är du med på att det står i frågeställningen att

F(1,-2,1) = (0,0,0)

F(1,0,-1) = (1,0,-1)

F(0,1,0) = (0,1,0)

?

Bilda basvektorerna (1,0,0), (0,1,0) och (0,0,1) som linjärkombinationer av vektorerna med kända avbildningar; (1,-2,1), (1,0,-1) och (0,1,0). (Den sista var ju själv en basvektor.)

T.ex är 

(2,0,0) = (1,-2,1) + (1,0,-1) + 2*(0,1,0)

Halvera för (1,0,0) och ta på liknande sätt fram (0,0,1).

Sedan får du fundera på vad som är "linjärt" i en linjär avbildning. 

Svara
Close