Linjär algebra fråga 1
Fråga 1:
Låt W vara det delrum av R5 som spänns upp av vektorerna
Bestäm dimensionen för W. Ange även bas för delrummet W.
Lösnings förslag:
Uppställning av matrisen i kolonform.
Jag har ställt upp matrisen i kolonform är det rätt eller skulle man kunna ställa upp den i rad form och i sådana fall varför?
Matris efter massa rad operationer och sedan har vi tre basvektorer (som har tagits ut i kolonform.
Är det rätt att göra på detta sätt och får jag nu dimensionen R4 som spänns upp av tre vektorer i delrummet W eller blir dimensionen R3 .
Tack för all hjälp (förklara gärna)
1. Det spelar ingen roll om du ställer upp i rad- eller kolumnform, bara du är konsekvent genom hela uppgiften.
2. Jag förmodar av din utredning att det är DETERMINANTEN du beräknar?
3. De två nedersta raderna är enbart 0-or. Det innebär att dimensionen kan vara högst 3.
svar på fråga 2:Har inget med determinanten att göra i denna uppgift. (Vad jag vet)
svar på fråga 3: Okej alltså , men kan inte 3 vektorer ge upphov till dimension
Dimensionen för ett rum bestäms av det maximala antalet lineärt oberoende vektorer. För att testa det lineära beroendet kan man sätta in vektorerna som kolonn- eller radvektorer i en matris vars determinant man beräknar t ex genom "en massa radoperationer" som du skriver. Därför gissade jag att det var determinanten du beräknade. Vektorerna är linjärt oberoende om och endast om determinanten är skild från 0. Man kan också gå direkt på definitionen på lineärt oberoende dvs skriva en lineärkombination av vektorerna och se om koefficienterna måste vara 0 för att linjärkomb. ska bli 0.
Jag skrev att dimensionen kunde vara HÖGST 3. Du bör testa dina tilltänkta basvektorer så att du vet om de är lin. ob. innan du drar slutsatsen att dimensionen = 3.
Två standardmetoder behandlas här:
https://yutsumura.com/find-a-basis-for-the-subspace-spanned-by-five-vectors/