3 svar
231 visningar
Laguna Online 30495
Postad: 24 feb 2019 20:13 Redigerad: 25 apr 2022 11:47

Kvadrater

I en bok jag håller på och läsa finns följande uppgift: ställ upp talen 1 till och med 16 i en sådan ordning att summan av två tal som står bredvid varandra alltid är ett kvadrattal. 

AlvinB 4014
Postad: 24 feb 2019 20:46 Redigerad: 24 feb 2019 20:46

Analyserar man de möjliga talparen finner man att två av dem sticker ut. Många av talen kan kombineras med två olika tal för att bli ett kvadrattal, t.ex. 3+6=93+6=9 och 3+13=163+13=16, men talen 88 och 1616 kan bara kombineras med ett tal. Därför måste dessa vara start- och sluttal i sekvensen. Därefter är det inte så svårt att gissa sig fram till sekvensen (så vitt jag kan se är det bara trean som kan ställa till det eftersom den kan kombineras med tre olika tal):

8 1 15 10 6 3 13 12 4 5 11 14 2 7 9 168\ 1\ 15\ 10\ 6\ 3\ 13\ 12\ 4\ 5\ 11\ 14\ 2\ 7\ 9\ 16

Observera att det även fungerar att vända på sekvensen (d.v.s börja 16 9 7...16\ 9\ 7...).

Utan att ha några vidare bevis gissar jag att dessa två är de enda giltiga sekvenserna.

AndersW 1622
Postad: 24 feb 2019 20:47

Genom "brute force"

8, 1, 15, 10, 6, 3, 13, 12, 4, 5, 11, 14, 2, 7, 9, 16

Smutstvätt 25080 – Moderator
Postad: 24 feb 2019 21:08

Tal: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

Aktuella kvadrattal: 1, 4, 9, 16, 25 (resterande kvadrattal är för stora)

16 är det enklaste talet, eftersom det måste ge kvadrattalet 25. 16 måste då stå bredvid en nia, och inget kan stå på andra sidan, vilket ger möjligheterna 16, 9 och 9, 16. Nio kan också kopplas till sju, och så vidare.

För att försöka skriva upp något läsbart av detta: 16, 9, 7, 2, 14, 11, 5, 4, 12, 13, 3, 6, 10, 15, 1, 8

Svara
Close