6 svar
175 visningar
Zeus behöver inte mer hjälp
Zeus 604
Postad: 25 jan 2021 11:15 Redigerad: 25 jan 2021 11:16

Kontrollera inflexionspunkten

Hej!

Jag vill kontrollera om det x jag fått från f"(x) = 0 verkligen är en inflexionspunkt eller om det är en terasspunkt. Jag vet ju att om det är en inflexionspunkt måste tecknen för andraderivatan växla på vardera sida om inflexionspunkten.

Så då väljer jag att jag testa teckenväxlingen på vardera sida med andraderivata. Men min fråga är hur vet jag hur långt bort jag får gå från punkten? Om f"(x) = 0 t.ex. ger x = 3 så kan jag testa f"(2) samt f"(4) för att kolla teckenväxlingen. Men var går gränsen? Jag kan väl inte testa f"(-1000) och f"(1000). Då skulle jag komma för långt bort från punkten, och där skulle andraderivatan inte nödvändigtvis ha samma tecken väl?

Yngve Online 40266 – Livehjälpare
Postad: 25 jan 2021 13:08 Redigerad: 25 jan 2021 13:12

Hej.

Till att börja med - en terrasspunkt är en inflexionspunkt.

Till din fråga:

Säg att funktionen f''(x)f''(x) är kontinuerlig.

Säg att f''(x)f''(x) har nollställen i stigande ordning x1,x2,x3x_1, x_2, x_3 o.s.v.

Om nu f''(x)<0f''(x)<0 för något värde på xx t ex. i intervallet x1<x<x2x_1<x<x_2 så gäller att f''(x)<0f''(x)<0 i hela detta intervall, dvs f''(x)f''(x) har samma tecken i hela intervallet.

Samma sak gäller för övriga intervall och även om f''(x)f''(x) skulle vara positiv.

Frågor till dig:

  1. Kan du se varför?
  2. Hjälper det dig vidare i att själv resonera fram ett svar på din fråga?
Zeus 604
Postad: 27 jan 2021 13:18 Redigerad: 27 jan 2021 13:20

Jag missuppfattade min lärare förut, jag förstår nu att även en terasspunkt är en inflexionspunkt.

Men jag vill veta hur man kontrollerar om det är en inflexionspunkt. 

Säg att det är en andragradsfunktion. Då kommer inte x i f"(x) =0 vara en inflexionspunkt. Jag antar att man kontrollerar detta genom att kolla teckenväxlingen för andraderivatan. Om tecknen inte växlar runt punkten är det ingen inflexionspunkt.

Säg nu att vi har en funktion med flera x för f"(x) =0. Då får jag flera punkter. Hur testar jag teckenväxlingen nu? Om ett x-värde t.ex. är 3 så bör jag kolla andraderivatan f"(<3) och f"(>3). Men problemet är, hur vet jag att jag inte går för långt bort från punkten? Tänk så väljer jag f"(1000) men då kanske jag får ett värde som tillhör en annan "sväng".

Smaragdalena 80504 – Avstängd
Postad: 27 jan 2021 13:28

Om f(x) är en andragradsfunktion så KOMMER INTE andraderivatan att vara 0 för något värde på x. 

Yngve Online 40266 – Livehjälpare
Postad: 27 jan 2021 14:39
Zeus skrev:

...

Jag antar att man kontrollerar detta genom att kolla teckenväxlingen för andraderivatan. Om tecknen inte växlar runt punkten är det ingen inflexionspunkt.

Det stämmer. Du kan läsa mer om det här.

Säg nu att vi har en funktion med flera x för f"(x) =0. Då får jag flera punkter. Hur testar jag teckenväxlingen nu? Om ett x-värde t.ex. är 3 så bör jag kolla andraderivatan f"(<3) och f"(>3). Men problemet är, hur vet jag att jag inte går för långt bort från punkten? Tänk så väljer jag f"(1000) men då kanske jag får ett värde som tillhör en annan "sväng".

Den frågan försökte jag besvara i mitt första svar i denna tråd. Läs det svaret igen och försök att besvara de frågor jag skrev på slutet.

Säg till om du inte förstår vad jag menar.

Zeus 604
Postad: 28 jan 2021 11:06

Jag förstår vad du menar nu Yngve.

Smaragdalena skrev:

Om f(x) är en andragradsfunktion så KOMMER INTE andraderivatan att vara 0 för något värde på x. 

Kan jag få ett exempel på en funktion med andraderivatan 0 utan inflexionspunkt?

Smaragdalena 80504 – Avstängd
Postad: 28 jan 2021 11:10
Zeus skrev:

Jag förstår vad du menar nu Yngve.

Smaragdalena skrev:

Om f(x) är en andragradsfunktion så KOMMER INTE andraderivatan att vara 0 för något värde på x. 

Kan jag få ett exempel på en funktion med andraderivatan 0 utan inflexionspunkt?

Det har väl ingenting att göra med mitt påstående?

Men för att svara på din fråga: f(x) = x4 i punkten x = 0, eller funktionen f(x) = 5 eller funktionen f(x) = 2x+17, båda i vilken punkt du vill.

Svara
Close