1 svar
25 visningar
maaja behöver inte mer hjälp
maaja 14
Postad: 6 okt 15:08

Kontinuerliga och icke-kontinuerliga funktioner

För funktionerna f och g gäller:

f(x)=x+1x<13-xx1

g(x)=x3x-2x2-4x>-2

Då jag ritar upp graferna till f och g ser jag att f är kontinuerlig och att g inte är det. Nu funderar jag på hur jag kan motivera detta algebraiskt. Är detta korrekt?:

f(x):

 limx1x+1 = 1+1 = 2limx1 3-x = 3-1 = 2

Svar: Eftersom gränsvärdet då x går mot 2 är detsamma för de två intervallen så är funktionen kontinuerlig.

g(x): 

limx-2x3 = (-2)3=-8limx-2x2-4=(-2)2-4=4-4=0

Svar: Eftersom gränsvärdet då x går mot -2 inte är desamma för de två intervallen så är funktionen inte kontinuerlig. 

sictransit 1072 – Livehjälpare
Postad: 6 okt 15:26 Redigerad: 6 okt 15:29

Jag tycker ditt resonemang är bra.

Min minnesregel är att kontinuerliga funktioner skall man kunna rita upp, utan att lyfta pennan.

Mer info finns här, inklusive lite specialvillkor angående gränsvärden från höger/vänster: https://www.matteboken.se/lektioner/matte-3/derivata/kontinuerliga-funktioner#!/

f(x)=1x

är kontinuerlig trots att gränsvärdena är olika om du kommer från den positiva resp. negativa sidan. Dock är inte funktionen definierad för x=0, så det är ändå OK. Du måste lyfta pennan, men bara -1 lite. ;-)

Svara
Close