Komplext talplan
Jag har fastnat på denna uppgift och vet inte hur jag ska börja. Jag ersatte z=a+bi men mer än så vet jag inte riktigt hur jag kan fortsätta.
Att skriva z som a + bi kommer inte att hjälpa dig i den här uppgiften. Det gäller istället att förstå vad som avses.
Vet du vad de olika delarna (absolutbelopp och imaginärdel) i uppgiften betyder?
Såhär har de ritat i facit. Absolutbeloppet innebär väl sträckan från origo till omkretsen, alltså radien, men nu är cirklarna förskjutna så sträckan till origo verkar vara olika beroende på vilken punkt på omkretsen man väljer. Imz>0 betyder att y>0 (den lilla halvcirkeln) medan Imz0 betyder att y0 (den stora halvcirkeln).
Ja nästan.
avser avståndet från till .
(Jämför med cirkelns ekvation )
Därför betyder
- avståndet från till talet .
- avståndet från till talet .
Och vad gäller imaginärdel så stämmer det du säger, men kalla inte koordinaterna för x och y om inte koordinataxlarna har givits just de beteckningarna.
- avser hela det övre halvplanet.
- avser hela det nedre halvplanet inklusive realdelsaxeln.
Nej, absolutbeloppet avståndet till origo endast om det är |z|, inte om det är t ex |z-3|, då är det avståndet från punkten 3+0i.
Yngve skrev:Ja nästan.
avser avståndet från till .
(Jämför med cirkelns ekvation )
Därför betyder
- avståndet från till talet .
- avståndet från till talet .
Och vad gäller imaginärdel så stämmer det du säger, men kalla inte koordinaterna för x och y om inte koordinataxlarna har givits just de beteckningarna.
- avser hela det övre halvplanet.
- avser hela det nedre halvplanet inklusive realdelsaxeln.
Kan man då tänka sig att 3 och -1 utgör "origo", alltså mittpunkten för cirklarna, då stämmer det för den stora halvcirkeln att radien är 5. Men då undrar jag för den lilla halvcirkeln ska radien vara mindre än 1, men i figuren framgår det att r=1.
Ja så kan du se det.
Den mindre halvcirkeln är streckad, vilket betyder att den inte ingår. Det är endast punkterna innanför halvcirkeln som ingår.
Det står ju |z - 3| < 1, dvs strikt olikhet.
Yngve skrev:Ja så kan du se det.
Den mindre halvcirkeln är streckad, vilket betyder att den inte ingår. Det är endast punkterna innanför halvcirkeln som ingår.
Det står ju |z - 3| < 1, dvs strikt olikhet.
Då förstår jag, tack så mycket för hjälpen!
Kan man då tänka sig att 3 och -1 utgör "origo", alltså mittpunkten för cirklarna, då stämmer det för den stora halvcirkeln att radien är 5.
Du verkar tänka rätt, men kalla det inte för origo!
Men då undrar jag för den lilla halvcirkeln ska radien vara mindre än 1, men i figuren framgår det att r=1.
Nej, det gör det inte. Titta noga, så ser du att den stora halvcirkeln har heldragen kontur (d v s randen ingår) men den lilla halvcirkeln har streckad kontur (randen ingår inte).