31 svar
422 visningar
3.14 behöver inte mer hjälp
3.14 189
Postad: 7 mar 2022 20:29 Redigerad: 7 mar 2022 21:23

Kombinatorik - Lösenord

Jag vet att ett lösenord innehåller sifforna 1,2,3,4 och att det är 6-siffrigt. Hur många olika kombinationer måste jag testa för att få rätt lösenord?

 

Påbörjad lösning:

Jag har tänkt att 1,2,3,4 måste förekomma minst en gång och att jag har 2 siffror kvar att välja bland dessa 4.

Jag ritade upp problemet som ett "stars and bars" problem/staketproblem.

 

X = tar siffran

I = byt/skippar

 

1              2             3             4

X       I     X      I              I

 

Då har jag tagit en 1:a och 2:a

 

Sen så försökte jag räkna ut antal sätt genom att ta

52×6!

för att 6! är antalet sätt att ordna siffrorna, men då får jag fel svar.

 

Kan någon förklara hur man ska göra?

3.14 189
Postad: 7 mar 2022 21:24

Ska man lösa det på ett annat sätt? Alltså att det inte är ett staketproblem?

Laguna Online 30495
Postad: 7 mar 2022 21:46 Redigerad: 7 mar 2022 21:48

Varför måste siffrorna förekomma minst en gång var?

Edit: Jaha, det är det som menas med formuleringen.

Men vet man att bara de siffrorna kan förekomma?

 

3.14 189
Postad: 7 mar 2022 21:49

För att det står i uppgiften att dessa siffror ingår i lösenordet och att ingen annan siffra ingår.

Micimacko 4088
Postad: 7 mar 2022 22:30

Jag tror du behöver dela upp i fallen när du har 2 av samma siffra och när du har 3 likadana. 6! ger för många kombinationer när vissa siffror är samma.

3.14 189
Postad: 7 mar 2022 22:32

Hur ska jag göra det? Jag fattar inte riktigt

Micimacko 4088
Postad: 7 mar 2022 22:33

Om du har 123444, hur många koder kan du göra?

Är det lika många som med tex 112234?

3.14 189
Postad: 7 mar 2022 22:38 Redigerad: 7 mar 2022 22:38

Blir det inte 6!3! för 123444 och för 6!2!2! 112234?

 

Alltså färre koder för 123444 .

Micimacko 4088
Postad: 7 mar 2022 22:41

Och hur många kan du göra med 3 lika? Och utan 3 lika? Sen är det bara att plussa ihop

3.14 189
Postad: 7 mar 2022 22:45 Redigerad: 7 mar 2022 22:46

Jag får inte ihop det, ska man addera det man har fått fram?

Om jag gör det får jag fortfarande inte rätt

Micimacko 4088
Postad: 7 mar 2022 22:47

Ja, när du har fått fram det. Hur har du gjort?

3.14 189
Postad: 7 mar 2022 22:51

1111234 ger 6!4!=30

1112234 ger 6!3!2!=60

1122234 ger samma sak som ovan så vad ska 6!3!2!vara upphöjt till?

Micimacko 4088
Postad: 7 mar 2022 22:56

Upphöjt? Du behöver fundera ut hur många av varje du har. Gör ungefär som i ditt första inlägg tex.

3.14 189
Postad: 7 mar 2022 23:00

Hur ska jag utgå från min första metod om jag ska dela in det i fall?

Micimacko 4088
Postad: 8 mar 2022 06:50

Du gör en uträkning för varje fall. På hur många sätt kan du välja vilken du tar 3 av tex?

Bubo 7347
Postad: 8 mar 2022 07:44
3.14 skrev:

För att det står i uppgiften att dessa siffror ingår i lösenordet och att ingen annan siffra ingår.

Dina beskrivningar av uppgiften hänger inte ihop. Hur är uppgiften formulerad?

Ture 10339 – Livehjälpare
Postad: 8 mar 2022 11:29 Redigerad: 8 mar 2022 14:16

Jag har uppfattat det som så

Ett lösenord består av 6 tecken där tecknen kan väljas av siffrorna 1,2,3 och 4.

Edit: Varje siffra måste förekomma minst en gång

Vi ska hitta antal kombinationer

Dela upp i två fall.

1. en siffra förekommer 3 ggr

Välj vilken siffra som ska förekomma 3 ggr på 4 sätt

Fördela siffrorna 1-4 på de 6 platsrrna på 6*5*4*3 = 360 sätt

De två återstående pisitionerna kan bara fyllas på ett sätt. 

Totalt alltså 4*360 = 1440 kombinationer

2. två av siffrorna förekommer 2 ggr den här får du fundera på själv...

SvanteR 2746
Postad: 8 mar 2022 13:51 Redigerad: 8 mar 2022 13:51

Exakt hur är uppgiften formulerad från början? Kan du lägga upp en bild?

Det är nämligen skillnad på:

  1. Ett lösenord innehåller bara sifforna 1,2,3,4 och är 6-siffrigt.
  2. Ett 6-siffrigt lösenord måste innehålla sifforna 1,2,3,4 minst en gång, men för övrigt får man välja fritt.

Ture uppfattar frågan som alternativ 1, men jag trodde det var alternativ 2 när jag läste den. Det blir olika svar beroende på vilket alternativ det är.

Ture 10339 – Livehjälpare
Postad: 8 mar 2022 14:19

Kommentar till Svante, jag hade uttryckt mig oklart, jag har uppdaterat mitt inlägg

Siffrorna 1-4 kan väljas, varje siffra måste förekomma minst en gång, menade jag.

Håller med om att vi måste få se uppgiften i original. 

3.14 189
Postad: 8 mar 2022 19:41

Original uppgift:

Carl har glömt sitt lösenord, som består av sex siffror, till hans dator. Men han kan tydligt se att siffrorna 1,2,3,4 ingår i lösenordet pga slitage på tangentbordet.  Ingen annan siffra ingår. Hur många kombinationer måste han testa för att vara säker på att han hittar den rätta?

3.14 189
Postad: 8 mar 2022 19:43

Men jag fattar inte vad Ture menar med att man kan fördela fördela siffrorna 1-4 på de 6 platserna på 6*5*4*3 = 360 sätt, hur kommer man fram till det?

Ture 10339 – Livehjälpare
Postad: 8 mar 2022 20:01

Du vet att siffrorna 1 tom 4 ingår minst en gång vardera och att det totalt finns 6 positioner i lösenordet.

Då kan vi börja med att placera ut siffrorna 1 till 4.

Siffran 1 kan sättas på 6 olika ställen, sen kan vi sätta siffran 2 på 5 olika ställen, siffran 3 kan sättas på 4 olika ställen och siffran 4 kan sättas på 3 olika ställen. (Det spelar ingen roll om vi istället börjar med att placera ut siffrorna i en annan turordning)

Alltså 6*5*4*3 = 360 olika sätt att placera siffrorna 1 till 4 på de totalt 6 olika positionerna i lösenordet.

Om en av siffrorna förekommer 3 ggr kan vi välja en av siffrorna 1-4 på 4 olika sätt och sätta dom på de 2 återstående positionerna

Alltså får vi 360*4 olika lösenord där en av siffrorna förekommer 3 ggr,

I fallet att två av siffrorna förekommer 2 ggr vardera börjar man likadant, placera ut de 4 talen en gång på platserna på 360 olika sätt.

Sen får du tänka själv på hur man gör sen, återkom om du kör fast!

Micimacko 4088
Postad: 9 mar 2022 07:56
3.14 skrev:

Blir det inte 6!3! för 123444 och för 6!2!2! 112234?

 

Alltså färre koder för 123444 .

Här tänkte du rätt. Vet inte varför du räknar med 7 siffror senare. När du ska välja vilken siffra som ska vara med 3 gånger har du 4 alternativ, så du behöver ta första talet här gånger 4.

När du ska välja ut 2 siffror att använda 2 gånger kan du göra det på (4 över 2) sätt.

farfarMats 1189
Postad: 9 mar 2022 09:29

Varför dela upp problemet efter repetitioner? När de 4 siffrorna har placerats på sina 360 sätt återstår 2 platser som ska besättas med vardera 1 av 4 siffror ( oberoende av varandra och de redan placerade siffrorna ). Naturligtvis blir svaret detsamma som när man delar upp efter multipla förekomster av siffror men det är ju så mycket enklare tankemässigt.

3.14 189
Postad: 9 mar 2022 10:26

Jag kommer inte vidare med det andra fallet. Hur löser man det?

Micimacko 4088
Postad: 9 mar 2022 14:42
3.14 skrev:

Jag kommer inte vidare med det andra fallet. Hur löser man det?

Du tar (4 över 2) gånger hur många kombinationer du kan göra med 2 av varje, och det har du redan räknat ut så bara att lägga ihop de 2 fallen sen.

Micimacko 4088
Postad: 9 mar 2022 14:48
matsC skrev:

Varför dela upp problemet efter repetitioner? När de 4 siffrorna har placerats på sina 360 sätt återstår 2 platser som ska besättas med vardera 1 av 4 siffror ( oberoende av varandra och de redan placerade siffrorna ). Naturligtvis blir svaret detsamma som när man delar upp efter multipla förekomster av siffror men det är ju så mycket enklare tankemässigt.

Tänk dig att vi gör så en gång och får 1234__ i första steget. Sen i andra fyller vi på så det står 123412. En annan gång får vi __3412 i ditt första steg och lägger till så det blir 123412 i steg 2 igen. Då har man räknat samma kombination 2 gånger.

farfarMats 1189
Postad: 9 mar 2022 18:35

Skämskudde

Ture 10339 – Livehjälpare
Postad: 9 mar 2022 18:50

Här är en till som får skämmas...

3.14 189
Postad: 9 mar 2022 19:21

Lösning

Fall 1 - en siffra förekommer 3 gånger

41×6!3!=480

 

Fall 2 - två siffror förekommer 2 gånger

42×6!2!2! =1080

 

Antalet kombinationer blir

480 + 1080 = 1560

Micimacko 4088
Postad: 9 mar 2022 19:24

Ser rätt ut. Men som du märker så är det lätt att gå vilse i de här uppgifterna. Håller facit med?

3.14 189
Postad: 9 mar 2022 19:30

Japp, det gör det. Tack så mycket för förklaringen!

Svara
Close