Kombinatorik
Tjena!
Behöver hjälp med en fråga, första frågan lyder:
Hur många olika "ord" kan man bilda av bokstäverna i ordet, a) FISKA, b) BIL, c) BOKSTAV
Samtliga är ju en permutation av n element, så om |A|=n är det en permutation av A vilket ger, följande svar: a) 5!, b) 3! och c) 7!, vilket är rätt enligt facit.
Nästa fråga lyder:
Hur många olika "ord" kan man bilda av bokstäverna i ordet, a) SÅS, b) ALGEBRA, c) ABRAKADABRA, rätt svar här är tydligen:
a) 3!/2!, b)7!/2!, c) 11!/(5!*2!*2!).
Hur kommer det sig att lösningen på frågorna blir annorlunda? Vad jag kan se är det identiska frågor med olika alternativ bara. Man gör en uppräkning av samtliga element ur mängden och man tar hänsyn till ordningen, så varför är inte svaret: n! där n=antal bokstäver, på alla uppgifter?
Mvh, Fridein
Eftersom det finns bokstäver som förekommer flera gånger! I SÅS finns det två S, som är likadana. Då måste dubletterna divideras bort.
Skillnad är att man har samma bokstav flera gånger. I är varje bokstav unik, medans i har du två .
Om man räknar antalet permutationer i räknar man och som två olika ord, men det är de ju egentligen inte. Därför måste vi dela med antalet permutationer som :en kan arrangeras i ().
Såklart... Tack snälla!