Kapacitans
Hej igen!
Jag sitter lite fast med c uppgiften här och jag förstår inte alls facit.. Skulle någon kunna hjälpa med förklaring hur man ska tänka i en sådan uppgift och tillvägagångssättet?
När man sluter kretsen kommer och verka parallellt som en enda stor kondensator med kapacitansen . Om från början hade laddningen ska det nu alltså gälla att
Där är den nya spänningen. Kan du beräkna värdet på ?
Sedan laddas kondensatorn ur över och det går att bestämma som jag tror du har gjort tidigare.
Är du med?
Inte riktigt med att C1U = Q, C1 är väl inte parallell med U och har därför inte samma spänning? Och jag förstår inte u2(0+) i facit? ..
Efter lång tid, när den första brytaren är sluten och den andra är öppen kan du tänka dig detta schema
Laddningen på blir då . Den andra delen av kretsen deltar inte eftersom den andra brytaren är öppen. Dessutom flyter ingen ström genom kretsen (kondensatorn är fullt uppladdad) och därmed är spänningen över kondensatorn . Är du med på det?
Laddningen ska sedan delas upp på och så att de tillsammans verkar som en parallellkopplad kondensator. När man parallellkopplar två kondensatorer får man en ny kondensator som har kapacitansen . Vad blir den nya spänningen?
Slutligen ska den nya kondensatorn laddas ur över , då ser ju kretsen ut såhär:
Jag hänger med på det, men har jag fel att säga att spänningen U kommer fördelas på R också?
Och spänningen över (C1+C2) borde vara u2? För den är parallell med den nya kondensatorn?
I första skedet (första bilden) är strömmen i kretsen noll. Det innebär att det ligger 0V över R. Om du vill kan du se det som att det fördelas 0V över R :)
I det andra skedet (andra bilden) är spänningen över samma som spänningen över
Vid tiden blir spänningen
Jag kallar initialspänningen för att göra dig uppmärksam på att det är en konstant som behövs för att bestämma funktionen .
Du behöver alltså bestämma konstanten , initialspänningen. Den ges genom att du beräknar hur stor spänning som ligger över kondensatorerna till följd av laddningen precis när den andra brytaren sluts.
Du vet hur stor laddningen är från det första steget (första bilden).
Så laddningen Q = 10-8 som var på C1 fördelas på den nya kondensatorn C1+C2 . Vilket resulterar att spänningen över den nya är 5 V?
Hur ska man fortsätta?
Har lite svårt med alla dessa beteckningar med tiderna och hur man ska tänka kring de, t.ex vad T innebär, när vilken brytare öppnar och stänger i relation med varandra..
Beteckningarna kan vara lite jobbiga i början, men man vänjer sig om man kämpar med dem. Poängen är att man först inväntar ett steady state under lååång tid (så att kondensatorer och så vidare laddas upp / når ett jämviktsläge). Sedan vill man med beteckningarna förklara att man jättefort öppnar den ena brytaren och sluter den andra så att man går från den ena kretsen till den andra med bibehållet "state". Alltså att laddningarna konserveras under det snabba omslaget. Slutligen vill man göra en transientanalys vilket oftast betyder att du ska ställa upp en differentialekvation och lösa den (eller kunna den utantill från formelbladet).
Här är din krets när Q har fördelats till den "nya" kondensatorn:
Det här är en "RC"-krets. Den har differentialekvationen
Med lösningen
I ditt fall är ,
Är du med?
Jag tror hänger med på den delen