9 svar
102 visningar
AlexanderJansson 754
Postad: 26 mar 2024 19:47 Redigerad: 26 mar 2024 19:54

Seperabel

Hur löses uppgiften,

Används seperabel när man har y i exponenten och om y har en exponent över 1

Ture 10472 – Livehjälpare
Postad: 26 mar 2024 19:53

Den är separabel, 

mult bägge led med dx. 

Integrera därefter båda sidor

AlexanderJansson 754
Postad: 26 mar 2024 19:56 Redigerad: 26 mar 2024 20:02
Ture skrev:

Den är separabel, 

mult bägge led med dx. 

Integrera därefter båda sidor

är dx, delta x, och dy delta y, förstår annars inte varför man får multiplicera med dem, trode dx/dy var låst.

Enligt detta:
 Roughly speaking, we read Delta x as ``the change in x'' and Delta y as ``the change in y.'' So our equation becomes dy/dx = lim_{Delta x--> 0}(Delta y)/(Delta x} =lim_{Delta x--> 0} (f(x+Delta x) - f(x))/(Delta x), which is the usual definition of f'(x).

 

så är dx = 0, vilket betyder att ekvationen sprängs???

Ture 10472 – Livehjälpare
Postad: 26 mar 2024 20:19 Redigerad: 26 mar 2024 20:20

Jag har nog kunnat teorierna bakom det här, eller i alla fall fått dom förklarade för mig, men inte kommer jag ihåg varför det fungerar, förhoppningsvis finns det nån med färskare kunskaper om teorin som kan förklara.

Men

y2dydx=3x2

som är separabel, dvs y(x) och y'(x) står på ena sidan och x-termer på den andra sidan likhetstecknet,

kan man utveckla genom att integrera bägge led 

y2dy=3x2dx

vilket givetvis blir

y3/3 = x3+c 

återstår att lösa ut y 

AlexanderJansson 754
Postad: 26 mar 2024 20:34

Menar du att multiplikationen av dx eller dy tas ut av den integrerning med avseende på dess variabel.?

Ture 10472 – Livehjälpare
Postad: 26 mar 2024 20:52

Som sagt, jag har inte teorin dagsfärsk, men jag hittade den här sidan som förklarar lite bättre

https://eddler.se/lektioner/separabla-differentialekvationer/

AlexanderJansson 754
Postad: 26 mar 2024 22:14
Ture skrev:

Som sagt, jag har inte teorin dagsfärsk, men jag hittade den här sidan som förklarar lite bättre

https://eddler.se/lektioner/separabla-differentialekvationer/

Är  det bara y termerna som behöver vara multiplucerade?

Ture 10472 – Livehjälpare
Postad: 26 mar 2024 22:29

Jag är inte med på vad du menar med frågan.

y är en funktion av x

vänsterledet innehåller en funktion av y, nämligen y2 och en derivata dy/dx (kan oxå skrivas y’ )

då tänker man att vl är derivatan av en funktion av y (en sammansatt funktion ) och dess inre derivata. Så om vi integrerar vår funktion av y (dvs y2 ) borde vi få fram den funktion som VL är en derivata av. 
Men för att likhetstecknet ska gälla måste vi göra samma sak i HL.

AlexanderJansson 754
Postad: 26 mar 2024 22:49
Ture skrev:

Jag är inte med på vad du menar med frågan.

y är en funktion av x

vänsterledet innehåller en funktion av y, nämligen y2 och en derivata dy/dx (kan oxå skrivas y’ )

då tänker man att vl är derivatan av en funktion av y (en sammansatt funktion ) och dess inre derivata. Så om vi integrerar vår funktion av y (dvs y2 ) borde vi få fram den funktion som VL är en derivata av. 
Men för att likhetstecknet ska gälla måste vi göra samma sak i HL.

Kan x termerna va en summa,

naytte 5209 – Moderator
Postad: 26 mar 2024 22:59

är dx, delta x, och dy delta y, förstår annars inte varför man får multiplicera med dem, trode dx/dy var låst.

Jag hoppar in här lite vid sidan om. Du har tyvärr blivit offer för matematikens formalisering och den svenska skolundervisningen. Nu ska jag påstå något väldigt kaxigt: det finns inga problem med att betrakta dy/dx\displaystyle \mathrm{d}y/\mathrm{d}x som en kvot. Nada. 

Differentialer är infinitesimala förändringar i en variabel. Man kan visa rigoröst att en (många, faktiskt) utvidning av de reella talen som tillåter algebra med sådana tal existerar, och ger samma resultat som vanlig gränsvärdesanalys. Att infinitesimaler beter sig som väldigt små reella tal är faktiskt intuitionen bakom den reella analysen generellt. För det har du bl.a. Leibniz att tacka.

Svara
Close