9 svar
90 visningar
Fibonacci behöver inte mer hjälp
Fibonacci 231
Postad: 11 nov 2019 11:41 Redigerad: 11 nov 2019 11:42

Integrationsgränser för dubbelintegral

Jag behöver hjälp med f)-uppgiften då jag inte förstår hur jag ska sätta integrationsgränserna. Om jag ritar upp det ser det ut såhär

Det är ett återkommande problem att jag inte riktigt vet hur jag ska sätta gränserna för denna typ av uppgifter. Finns det några generella tips?

Smaragdalena 80504 – Avstängd
Postad: 11 nov 2019 12:13

Integrationsgränserna är från 0 minuter till 24 minuter. Din bild föreställer något annat, förmodligen har du väntetiden på morgonen på ena axeln och väntetiden på eftermiddagen på den andra. Diagonalen från (0,12) till (12,0) är alla de möjligheter som gör att summan är 12 minuter.

Fibonacci 231
Postad: 11 nov 2019 14:21

Okej, i facit står det att jag ska integrera från t-12 till 12 och t-x till 12.

Smaragdalena 80504 – Avstängd
Postad: 11 nov 2019 15:26

Det går lika bra, om man väljer sina variabler annorlunda än jag gjorde. I vilket fall som helst blir det en likbent triangel med arean 1.

Fibonacci 231
Postad: 12 nov 2019 08:31

Okej, jag förstår dock inte, jag kan inte det riktigt. Tycker det är väldigt svårt. Kan man visualisera det på något vis?

parveln 703 – Fd. Medlem
Postad: 12 nov 2019 08:46

Det enklaste är att bara skriva upp vad du ska beräkna för att hitta integrationsgränserna. Kalla de två väntetiderna X och Y. P(X+Y<t)=P(Y<t-X). Vi ska alltså räkna ut hur stor sannolikhet det är att y koordinaten ligger under linjen t-x(detta kan du rita) med det ytterliggare villkoret att båda x och y ligger mellan 0 och 12. (Skriver på mobilen så det blev sträng olikhet överallt. Det spelar dock ingen roll eftersom det är en kontinuerlig fördelning.)

Smaragdalena 80504 – Avstängd
Postad: 12 nov 2019 09:30

Det är störst sannolikhet att väntetiden blir 12 minuter - på samma sätt som det blir störst sannolikhet att summan blir 7 om man kastar två vanliga tärningar. Sannolikheten att du behöver vänta 24 minuter (d v s att du precis missat bussen 2 ggr) är lika stor som sannolikheten att bussen kommer direkt båda gångerna. Sannolikheten att du behöver vänta 6 minuter totalt är lika stor som sannolikheten att du behöver vänta 24-6=18 minuter. Allt detta beror på att den ursprungliga väntetiden är likformigt fördelad. Är du med på detta?

Fibonacci 231
Postad: 12 nov 2019 13:57
parveln skrev:

Det enklaste är att bara skriva upp vad du ska beräkna för att hitta integrationsgränserna. Kalla de två väntetiderna X och Y. P(X+Y<t)=P(Y<t-X). Vi ska alltså räkna ut hur stor sannolikhet det är att y koordinaten ligger under linjen t-x(detta kan du rita) med det ytterliggare villkoret att båda x och y ligger mellan 0 och 12. (Skriver på mobilen så det blev sträng olikhet överallt. Det spelar dock ingen roll eftersom det är en kontinuerlig fördelning.)

Okej, då blev det åtminstone lite klarare!

Fibonacci 231
Postad: 12 nov 2019 14:02
Smaragdalena skrev:

Det är störst sannolikhet att väntetiden blir 12 minuter - på samma sätt som det blir störst sannolikhet att summan blir 7 om man kastar två vanliga tärningar. Sannolikheten att du behöver vänta 24 minuter (d v s att du precis missat bussen 2 ggr) är lika stor som sannolikheten att bussen kommer direkt båda gångerna. Sannolikheten att du behöver vänta 6 minuter totalt är lika stor som sannolikheten att du behöver vänta 24-6=18 minuter. Allt detta beror på att den ursprungliga väntetiden är likformigt fördelad. Är du med på detta?

Ja, jag tror det. E(X+Y) =0+122 + 0+122 = 12 blir ju den förväntade väntetiden för båda, dvs 6+6.

parveln 703 – Fd. Medlem
Postad: 12 nov 2019 14:23 Redigerad: 12 nov 2019 14:25
Fibonacci skrev:
parveln skrev:

Det enklaste är att bara skriva upp vad du ska beräkna för att hitta integrationsgränserna. Kalla de två väntetiderna X och Y. P(X+Y<t)=P(Y<t-X). Vi ska alltså räkna ut hur stor sannolikhet det är att y koordinaten ligger under linjen t-x(detta kan du rita) med det ytterliggare villkoret att båda x och y ligger mellan 0 och 12. (Skriver på mobilen så det blev sträng olikhet överallt. Det spelar dock ingen roll eftersom det är en kontinuerlig fördelning.)

Okej, då blev det åtminstone lite klarare!

Notera att täthetsfunktionen för den gemensamma fördelningen fås genom att multiplicera marginalfördelningarna eftersom X och Y antas oberoende. Det är den gemensamma täthetsfunktionen du ska integrera.

Svara
Close