Integral tolkning
har jag tolkat detta rätt ?
Använd vad som står i uppgiften: "Hastighet är derivatan av sträckan". Och integraler är lite motsatsen till derivata, eller hur?
Dessutom har du skrivit m/s2 som enhet på hastighet på 7:an, det är en enhet för acceleration. Bara m/s ska det vara =)
Så det jag skrivit stämmer då inte ?
Nej, eftersom det som integreras är en hastighet kan inte det som kommer ut också vara en hastighet. Undersök enheterna på det som integreras: v(t) är en hastighet, så m/s, och dt är en tid, s. Dessa multipliceras ihop: v(t) * dt. Vad blir enheten då?
Menar du att på den första ska det vara ”på 80 sekunder har det gått 6 sekunder” eller att hastigheten blir 80 mellan sekunderna 0-6?
Varken eller. När du deriverar en sträckafunktion får du en hastighetsfunktion. Integrering är som derivering baklänges, så när du integrerar en hastighetsfunktion får du en sträckafunktion. (när du deriverar eller integrerar med tid som variabel, vilket det är här)
Och mitt tips angående enheterna ger: m/s * s = m. Så, integralen beräknar en sträcka, mätt i meter.
Alltså hur kommer tolkningen bli då om jag ska förklara det