3 svar
294 visningar
johannes121 behöver inte mer hjälp
johannes121 271
Postad: 15 jan 2021 19:01 Redigerad: 15 jan 2021 19:04

Induktionsbevis - Fibonacci

Hej,

Behöver hjälp med att bevisa ovanstående:

Vi prövar först med basfallet n = 1. I VL fås då: 

F0F2-F12=1(2)-12=1

I HL fås (-1)^2 = 1. Därav är VL och HL densamma.

Nu antar vi att påstående stämmer för alla n >= 1, och prövar för n = p, där p tillhör de naturliga positiva heltalen.

FpFp+2-Fp+12

Jag har sedan efter detta försökt göra några substitutioner med hjälp av definitionen av Fibonnacis talföljd, men det verkar inte komma någonstans. Har ni något tips på vad jag kan börja med åtminstone?

Tack!

Smaragdalena 80504 – Avstängd
Postad: 15 jan 2021 19:53

Om du skall göra ett induktionsbevis, så skall du göra ett induktionsantagande, nämligen att Fp-1Fp+1-Fp2 = (-1)p+1 och försöka bevisa att i så fall så är FpFp+1-Fp+12 = (-1)p+2. Börja med vänsterledet och försök få fram HL. Använd dig av induktionsantagandet.

tomast80 4245
Postad: 15 jan 2021 20:08
Smaragdalena skrev:

Om du skall göra ett induktionsbevis, så skall du göra ett induktionsantagande, nämligen att Fp-1Fp+1-Fp2 = (-1)p+1 och försöka bevisa att i så fall så är FpFp+1-Fp+12 = (-1)p+2. Börja med vänsterledet och försök få fram HL. Använd dig av induktionsantagandet.

Det blir väl FpFp+2...F_pF_{p+2}... ?

Smaragdalena 80504 – Avstängd
Postad: 15 jan 2021 20:59

Du har rätt, jag skrev fel.

Svara
Close