Induktionsbevis
Behöver hjälp med uppgift 2305, så på a) vet jag att svaret är en aritmetisk talföljd eftersom differensen är konstant. Varför pratar uppgiften om geometrisk summa på b), när själva talföljden är aritmetisk:
Vi vet att d är 2, och men vad är an och vad är n?
c) Jag har inte förstått induktionsbevis så väl. Som jag förstår det är det ett sätt att bevisa olika matematiska påståenden och består av tre steg. Påståendet i detta fall är att 2+4+6+8+...+2n = n(n+1)
Men hur bevisar vi detta?
Dani163 skrev:Varför pratar uppgiften om geometrisk summa på b), när själva talföljden är aritmetisk:
Titta igen. Det står aritmetisk i b-uppgiften.
Det ska vara an = a1 + d(n-1)
Här är an det n:te talet och a1 det första talet.
Vi vet att d är 2, och men vad är an och vad är n?
c) Jag har inte förstått induktionsbevis så väl. Som jag förstår det är det ett sätt att bevisa olika matematiska påståenden och består av tre steg. Påståendet i detta fall är att 2+4+6+8+...+2n = n(n+1)
Men hur bevisar vi detta?
Ett induktionsbevis för att visa att en formel/ett samband gäller består av tre steg:
- Antag att sambandet gäller för något heltal n.
- Visa att sambandet i så fall gäller även för n+1.
- Visa att sambandet faktiskt gäller för ett första heltal n0
Då har vi visat att sambandet gäller för alla n n0