22 svar
618 visningar
intealltidsåsmart 69
Postad: 4 feb 2022 18:06

I en bakteriekultur växer antalet bakterier N med tiden t i timmar enligt funktionen

I en bakteriekultur växer antalet bakterier N med tiden t i timmar enligt funktionen N(t) = 12000·1,162t

(a) Skriv om funktionen på formen N(t) = 12000·ekt.Bestäm talet k.

Här tänker jag att k = In (1,162) Därav kan man skriva följande som svar:

12000*e In(1,162)t

Alternativt

12000*e0,150t

(b) Beräkna tillväxthastigheten vid t = 10,0h.

Vi har ekvationen från förra uppgiften: 12000e In(1,162)t

Eftersom att derivatan av ekt är  k*ekt så kan man räkna enligt följande: 

12000 * In(1,162)e10*In(1,162) = 8086,25

alltså är tillväxthastigheten 8086,25 (På ett ungefär, samt vet inte vad jag ska använda för enhet här)

(c) Hur lång tid tar det innan antalet bakterier fördubblats?

 

Jag tror jag har gjort rätt på fråga a och b, men har stannat på fråga c.

Bubo 7416
Postad: 4 feb 2022 18:33

För att kunna beräkna e upphöjt till Någonting, så måste Någonting vara utan enhet ("ha enhet 1"). Man kan t.ex. beräkna e upphöjt till 4, men inte e upphöjt till 4 meter.

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

På fråga c) gäller det att tänka fram rätt värde på ekt

intealltidsåsmart 69
Postad: 4 feb 2022 22:17
Bubo skrev:

För att kunna beräkna e upphöjt till Någonting, så måste Någonting vara utan enhet ("ha enhet 1"). Man kan t.ex. beräkna e upphöjt till 4, men inte e upphöjt till 4 meter.

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

På fråga c) gäller det att tänka fram rätt värde på ekt

Ang fråga C. 

12000 brde vara antal bakterier från början, alltså blir det fördubblade antalet 24000. Då ska uträkningen på ekvationen vara något i stil med 12000 * ekt = 24000. Kanske inte helt korrekt, men kanske på rätt spår eller? 

Är svaret på fråga a korrekt? 

intealltidsåsmart 69
Postad: 4 feb 2022 22:23
Bubo skrev:

För att kunna beräkna e upphöjt till Någonting, så måste Någonting vara utan enhet ("ha enhet 1"). Man kan t.ex. beräkna e upphöjt till 4, men inte e upphöjt till 4 meter.

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

På fråga c) gäller det att tänka fram rätt värde på ekt

Vänta nu, på fråga b visst är det antalet bakterier som det ökat med på 10 h? 

intealltidsåsmart 69
Postad: 4 feb 2022 23:37
intealltidsåsmart skrev:
Bubo skrev:

För att kunna beräkna e upphöjt till Någonting, så måste Någonting vara utan enhet ("ha enhet 1"). Man kan t.ex. beräkna e upphöjt till 4, men inte e upphöjt till 4 meter.

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

På fråga c) gäller det att tänka fram rätt värde på ekt

Ang fråga C. 

12000 brde vara antal bakterier från början, alltså blir det fördubblade antalet 24000. Då ska uträkningen på ekvationen vara något i stil med 12000 * ekt = 24000. Kanske inte helt korrekt, men kanske på rätt spår eller? 

Är svaret på fråga a korrekt? 

hur får man ut värdet på ekt?

Bubo 7416
Postad: 5 feb 2022 11:08
intealltidsåsmart skrev:

Ang fråga C. 

12000 brde vara antal bakterier från början, alltså blir det fördubblade antalet 24000. Då ska uträkningen på ekvationen vara något i stil med 12000 * ekt = 24000. Kanske inte helt korrekt, men kanske på rätt spår eller? 

Ja, korrekt. Du kan ju lösa ekvationen 12000 * A = 24000. Vad är A?

Är svaret på fråga a korrekt? 

Ja.

Bubo 7416
Postad: 5 feb 2022 11:11
intealltidsåsmart skrev:
Bubo skrev:

För att kunna beräkna e upphöjt till Någonting, så måste Någonting vara utan enhet ("ha enhet 1"). Man kan t.ex. beräkna e upphöjt till 4, men inte e upphöjt till 4 meter.

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

På fråga c) gäller det att tänka fram rätt värde på ekt

Vänta nu, på fråga b visst är det antalet bakterier som det ökat med på 10 h? 

Nej, det är ökningen just nu.

Ungefär samma skillnad som att du tittar på bilens hastighetsmätare just nu för att veta din fart - du tänker inte att du har åkt 200 km på fyra timmar och säger "nu håller jag 50 km/h".

Det är alltså N'(t) du ska räkna fram.

intealltidsåsmart 69
Postad: 5 feb 2022 11:42
Bubo skrev:
intealltidsåsmart skrev:

Ang fråga C. 

12000 brde vara antal bakterier från början, alltså blir det fördubblade antalet 24000. Då ska uträkningen på ekvationen vara något i stil med 12000 * ekt = 24000. Kanske inte helt korrekt, men kanske på rätt spår eller? 

Ja, korrekt. Du kan ju lösa ekvationen 12000 * A = 24000. Vad är A?

Är svaret på fråga a korrekt? 

Ja.

A blir då = 2. Då ska ekt=2?

Men sen då? Vet inte hur man får ut t. 

ein(1,162)*t = 2

intealltidsåsmart 69
Postad: 5 feb 2022 11:51
Bubo skrev:
intealltidsåsmart skrev:
Bubo skrev:

För att kunna beräkna e upphöjt till Någonting, så måste Någonting vara utan enhet ("ha enhet 1"). Man kan t.ex. beräkna e upphöjt till 4, men inte e upphöjt till 4 meter.

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

På fråga c) gäller det att tänka fram rätt värde på ekt

Vänta nu, på fråga b visst är det antalet bakterier som det ökat med på 10 h? 

Nej, det är ökningen just nu.

Ungefär samma skillnad som att du tittar på bilens hastighetsmätare just nu för att veta din fart - du tänker inte att du har åkt 200 km på fyra timmar och säger "nu håller jag 50 km/h".

Det är alltså N'(t) du ska räkna fram.

Men vadå. Blir tillväxhastigheten 8086,25 km/h?? Eller va? Vad ska jag använda för enhet..... 

Bubo 7416
Postad: 5 feb 2022 12:17
intealltidsåsmart skrev:

A blir då = 2. Då ska ekt=2?

Men sen då? Vet inte hur man får ut t. 

ein(1,162)*t = 2

2=eln(2)

Bubo 7416
Postad: 5 feb 2022 12:18
Bubo skrev:

För att kunna beräkna e upphöjt till Någonting, så måste Någonting vara utan enhet ("ha enhet 1"). Man kan t.ex. beräkna e upphöjt till 4, men inte e upphöjt till 4 meter.

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

På fråga c) gäller det att tänka fram rätt värde på ekt

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

 

Det skrev jag igår, och det får du fram enheten ur.

intealltidsåsmart 69
Postad: 5 feb 2022 12:45
Bubo skrev:
Bubo skrev:

För att kunna beräkna e upphöjt till Någonting, så måste Någonting vara utan enhet ("ha enhet 1"). Man kan t.ex. beräkna e upphöjt till 4, men inte e upphöjt till 4 meter.

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

På fråga c) gäller det att tänka fram rätt värde på ekt

kt måste alltså vara utan enhet. Om då t har enhet timme, så måste k ha vilken enhet?

Svaret i b) är mycket riktigt 12000 gånger k.

 

Det skrev jag igår, och det får du fram enheten ur.

Jag har ingen aning

intealltidsåsmart 69
Postad: 5 feb 2022 13:23
Bubo skrev:
intealltidsåsmart skrev:

A blir då = 2. Då ska ekt=2?

Men sen då? Vet inte hur man får ut t. 

ein(1,162)*t = 2

2=eln(2)

Nu hänger jag inte med alls, vad är det som händer här? Hur ska man använda det för att räkna ut vad t är

Bubo 7416
Postad: 5 feb 2022 13:26

Om eA=eB så måste A vara lika med B.

I det här fallet blir det eln(1.162)·t=eln(2)

och alltså ln(1.162)·t=ln(2)

Bubo 7416
Postad: 5 feb 2022 13:29

Ett exempel med enheter: Om A har enheten m/s och B har enheten s, så får A*B enheten (m/s)*s som blir m.

I det här fallet ska t som har enheten timme multipliceras med något så att produkten blir enhetslös ("enhet 1", som man kan säga).

timme·1timme=1

Vi skall alltså multiplicera med något som har enhet (1/timme). k har enhet (1/timme) eller "per timme" som kanske låter bättre.

intealltidsåsmart 69
Postad: 5 feb 2022 13:32
Bubo skrev:

Om eA=eB så måste A vara lika med B.

I det här fallet blir det eln(1.162)·t=eln(2)

och alltså ln(1.162)·t=ln(2)

Då blir t = 4.62 (på ett ungefär)

intealltidsåsmart 69
Postad: 5 feb 2022 13:34
Bubo skrev:

Ett exempel med enheter: Om A har enheten m/s och B har enheten s, så får A*B enheten (m/s)*s som blir m.

I det här fallet ska t som har enheten timme multipliceras med något så att produkten blir enhetslös ("enhet 1", som man kan säga).

timme·1timme=1

Vi skall alltså multiplicera med något som har enhet (1/timme). k har enhet (1/timme) eller "per timme" som kanske låter bättre.

Jag fattar fortfarande inte. k är väll själva förändringen eller?

Bubo 7416
Postad: 5 feb 2022 13:42

Inte riktigt, men k hör ihop med förändringen.

Förändringen, som man ska räkna ut i b),

  • är tillväxthastigheten, antal nya bakterier per tidsenhet just då
  • är derivatan av antalet bakterier, derivatan av N(t)
  • är lutningen på N(t)-kurvan

och eftersom N(t) är en funktion som innehåller en konstant k, så kommer derivatans värde att bero av k.

Här är några olika funktioner ek·t uppritade, med olika värden på k.

Bubo 7416
Postad: 5 feb 2022 13:43

Just de funktionerna jag ritade har allihop negativt värde på k, så det blir en minskning med tiden. I den här uppgiften är det tvärtom så att N(t) växter med tiden. k är större än noll, precis som du har räknat fram.

Bubo 7416
Postad: 5 feb 2022 14:32

Nytt försök med bilden i förrförra inlägget:

 

intealltidsåsmart 69
Postad: 5 feb 2022 15:55
Bubo skrev:

Inte riktigt, men k hör ihop med förändringen.

Förändringen, som man ska räkna ut i b),

  • är tillväxthastigheten, antal nya bakterier per tidsenhet just då
  • är derivatan av antalet bakterier, derivatan av N(t)
  • är lutningen på N(t)-kurvan

och eftersom N(t) är en funktion som innehåller en konstant k, så kommer derivatans värde att bero av k.

Här är några olika funktioner ek·t uppritade, med olika värden på k.

Så förändringen är e^k*t

Bubo 7416
Postad: 5 feb 2022 16:47

Nej. Du hade räknat alldeles korrekt redan från början, med k=ln(1.62), ungefär 0.150

    Eftersom att derivatan av ekt är  k*ekt så kan man räkna enligt följande: 

    12000 * In(1,162)e10*In(1,162) = 8086,25

 

Det jag svarade på i ett senare inlägg gällde enheten.

k har enheten "per timme", så svaret är 8086.25 per timme. Just vid tidpunkten 10timmar växer antalet med 8086 per timme.

intealltidsåsmart 69
Postad: 7 feb 2022 11:17
Bubo skrev:

Nej. Du hade räknat alldeles korrekt redan från början, med k=ln(1.62), ungefär 0.150

    Eftersom att derivatan av ekt är  k*ekt så kan man räkna enligt följande: 

    12000 * In(1,162)e10*In(1,162) = 8086,25

 

Det jag svarade på i ett senare inlägg gällde enheten.

k har enheten "per timme", så svaret är 8086.25 per timme. Just vid tidpunkten 10timmar växer antalet med 8086 per timme.

Okej då hänger jag med. 

Men c, 

12000 * eIn(1.162)t = 24000

eIn(1.162)t=eIn(2)

ln(1.162)⋅t=ln(2)

t = 4.62

Svara
Close