9 svar
930 visningar
Naturaretyvärr1 456
Postad: 28 maj 2021 14:48

hur vet man om lg 10^x=x eller 10^lgx=x

Hej!

Jag flörstog inte riktit hur man ska lösa denna men kollade i facit och det stog det här 

fråfan: lg(3x+1)=5

Som rubriken lyder förstår ja inte hur jag ska veta vilken av de jag ska använda (hur vet man om lg 10^x=x eller 10^lgx=x)

Hade ju lika gärna kunnat skriva 10^lg 5 så varför gör man inte det?

Tacksam för svar!

Korra 3798
Postad: 28 maj 2021 14:53 Redigerad: 28 maj 2021 14:54
Naturaretyvärr1 skrev:

Hej!

Jag flörstog inte riktit hur man ska lösa denna men kollade i facit och det stog det här 

 

fråfan: lg(3x+1)=5

Som rubriken lyder förstår ja inte hur jag ska veta vilken av de jag ska använda (hur vet man om lg 10^x=x eller 10^lgx=x)

Hade ju lika gärna kunnat skriva 10^lg 5 så varför gör man inte det?

Tacksam för svar!

Fall 1:lg10x=x·lg10=x·1=xFall 2:10lgx=xx=x, x 0

Förstår nog inte helt vad du frågar efter vilket är okej. Fråga igen på nytt om du inte känner dig förstådd av mig eller vänta på att någon annan som kanske förstår vad du menar ger ett bättre svar.

Naturaretyvärr1 456
Postad: 28 maj 2021 14:57

Hur vet man om man ska använda fall ett eller två? Det är de jag inte förstår :(

Smaragdalena 80504 – Avstängd
Postad: 28 maj 2021 14:58

Du hade kunnat skriva 

lg(3x+1) = 5

10(lg(3x+1) = 105

som mellansteg, om du hade velat.

Naturaretyvärr1 456
Postad: 28 maj 2021 15:01

SÅ man kan skriva HL som 10^lg5? För jag förstår inte varför man anväder lg 10^x är det för att man vill kunna stryka lg sedan?

Pelle 374
Postad: 28 maj 2021 15:05

Det följer ju direkt ur definitionen av tiologaritmen, eller snarare det är definitionen.

Se logaritmen som något som plockar ner exponenten.

100000=105lg(100000)=lg105=5

lg1=lg(1·100)=lg100=0

Detta förutsätter ju att lg är just tiologaritmen eftersom potensen skrivs med basen 10.

Ang. uppgiften så vill du ju bli av med lg för att kunna lösa ut x. För att bli av med lg måste du ta 10^(båda sidor).

Att ta 10^ är ju motsaten (inversen) till lg per definition.

När du löser ekvationer måste du ju göra alla operationer du gör på båda sidor. Börjar du fel märker du fort att ekvationen inte blir enklare (lösbar). Då får du börja om med annan operation (påp båda sidor).

Bedinsis 2898
Postad: 28 maj 2021 15:10

Om du hade skrivit om högerledet från 5 till 10lg(5) (som du föreslår i det inledande inlägget)så hade du haft det här sambandet:

lg(3x+1)= 10lg(5)

Vilket i varje fall inte gör mig klokare. Vi har då gått från en logaritm till två logaritmer, med skillnaden att den ena ligger som en exponent.

Jag förstår heller inte riktigt frågan, men så som jag tänker är att jag vill försöka få bort logaritmen så snart som möjligt för att vara i ett läge där jag kan göra uträkningar.

Vi har bara en logaritm i vänsterledet, så det som jag tänker är att om man tar 10vänsterledet så är man av med logaritmen. Samma matematiska operation måste dock utföras i båda leden. Om vänsterledet = högerledet borde 10vänsterledet = 10högerledet.

10lg(3x+1) = 105

Vänsterledet kan förenklas

3x+1 = 105

Och nu återskapar jag egentligen bara facit med lite ord inklistrade. Jag vet inte om det här hjälper.

Naturaretyvärr1 456
Postad: 28 maj 2021 15:13

Tack! det hjälpte mycket, så det finns alltså inget sätt att veta vilken man ska ta först eller indikatorer som nyckelord, eller? utan man måste se i uppgiften vilket som är det snabbaste sättet för att man ska ta bort lg.

Bedinsis 2898
Postad: 28 maj 2021 15:26

Jag försöker tänka ut ett problem som skulle lösts på sättet som du föreslår, och det bästa jag kommer på är:

103x+1 = 5

I det fallet är problemet att vi har en exponent i ena ledet men inte andra, så om man skriver om högerledet

103x+1 = 10lg(5)

Så har man 10ditten = 10datten vilket borde göra att ditten = datten (högst matematiskt språkbruk) vilket ger

3x+1 = lg(5)

och därifrån kan man subtrahera och dividera för att få x fritt.

Nyckelbiten är att vi vill ju kunna få x fritt. Står x i en exponent eller innanför en logaritm får man göra de operationer som krävs för att x skall friläggas.

Pelle 374
Postad: 28 maj 2021 15:31

Ja, som med alla ekvationer. Man får klura ut vilka operationer man ska göra (på båda sidor) för att få loss den variabel man söker. Att det inte känns självklart med logaritmekvationer än är bara för att det är nytt och du är ovan. Bara att göra MÅNGA uppgifter!

Du borde byta ditt namn till Naturaresåklart! ;)

Svara
Close