2 svar
48 visningar
Maple555 behöver inte mer hjälp
Maple555 106
Postad: 28 maj 2023 12:27

Hur vet man hur många lösningar det finns för exponentialekvationer?

Hej, 

hur vet man antalet lösningar hos en exponentialekvation? 

Jag märkte att exempelvis ekvationerna:

lg(x2)=lg(49)

och 4+lg(9)=lg(x2)

har två lösningar, dvs x=±7respektive x=±300

 

medan ekvationer såsom lg(4)+2lg(x)=lg(90)endast har en lösning, dvs x=22,5

varför är det så? Är inte 2lg(x)=lg(x2)? Hur visar det sig att vissa har två lösningar och andra har bara en? Jag tänker att det det har någonting med att logaritmer är definerat endast till postiva tal, men blir inte ett negativt tal alltid positivt när man kvadrerar det? 

Skulle verkligen vara till stor hjälp om någon kunde förklara detta! 

Yngve 40177 – Livehjälpare
Postad: 28 maj 2023 12:32 Redigerad: 28 maj 2023 12:34
Maple555 skrev:

Jag tänker att det det har någonting med att logaritmer är definerat endast till postiva tal,

Ja det stämmer och det är just därför det endast finns en lösning i fallet med lg(x) men att det kan finnas två lösningar i fallet med lg(x2).

men blir inte ett negativt tal alltid positivt när man kvadrerar det? 

Jo, men formeln 2lg(x) = lg(x2) gäller endast för positiva tal x.

Skulle verkligen vara till stor hjälp om någon kunde förklara detta! 

Blev det klarare nu?

Maple555 106
Postad: 28 maj 2023 14:14
Yngve skrev:
Maple555 skrev:

Jag tänker att det det har någonting med att logaritmer är definerat endast till postiva tal,

Ja det stämmer och det är just därför det endast finns en lösning i fallet med lg(x) men att det kan finnas två lösningar i fallet med lg(x2).

men blir inte ett negativt tal alltid positivt när man kvadrerar det? 

Jo, men formeln 2lg(x) = lg(x2) gäller endast för positiva tal x.

Skulle verkligen vara till stor hjälp om någon kunde förklara detta! 

Blev det klarare nu?

tack så mycket! nu förstår jag!

Svara
Close