46 svar
443 visningar
Sura98 behöver inte mer hjälp
Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 18:43 Redigerad: 23 nov 2019 18:43

Hur ska jag börja med uppgiften

Hej!

  1. Jag har en fråga so är Konen z = x^2 +y^2 delar sfären x^2 +y^2 +z^2 = 1 i två ytor. Beräkna arean av var och en av dessa ytor. Jag ritade upp området. Men jag vet inte riktig hur jag ska börja med uppgiften är det trippelintegral eller dubbelintegral jag ska få. Eftersom trippelintegralen ger ju mig volymen och inte arean men jag har x,y och z då. 
Smaragdalena 80504 – Avstängd
Postad: 23 nov 2019 19:00

Vad bra att du började med att rita upp området! Kan du lägga in bilden här?

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 19:07

Smaragdalena 80504 – Avstängd
Postad: 23 nov 2019 19:11

Vilken form har skärningen mellan konen och klotet?

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 19:18

Det är ju väl en cirkel men vet inte hur jag ska få ut den. Är det så att jag ska ställa konen och sfärens ekvation lika med varandra?

Smaragdalena 80504 – Avstängd
Postad: 23 nov 2019 19:28

Lös ut z ur klotets ekvation och sätt det lika med z för konen.

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 19:52

Jag försökte göra det du sa men jag får inte en ekvation för en cirkel. Jag fick x2+y2=sqrt(1-x2-y2) och av detta får jag (x2+y2)2+x2+y2=1 

Dr. G 9479
Postad: 23 nov 2019 19:58 Redigerad: 23 nov 2019 19:58

z=x2+y2z=x^2+y^2

är en paraboloid.

z=x2+y2z=\sqrt{x^2+y^2}

är en kon.

Vad är det som gäller i den här uppgiften?

Laguna Online 30484
Postad: 23 nov 2019 20:01
Sura98 skrev:

Jag försökte göra det du sa men jag får inte en ekvation för en cirkel. Jag fick x2+y2=sqrt(1-x2-y2) och av detta får jag (x2+y2)2+x2+y2=1 

Om du kallar x2+y2x^2+y^2 för t så har du en enkel andragradsekvation i t där. 

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 20:02

I uppgiften så står det konen men ekvationen för den är z=x2+y2.

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 20:11

Hej igen ju jag tror att det stod fel i uppgiften och det ska vara ruten ur eftersom nu går det att hitta cirkeln som konen skär sfären med. Tack för att du såg detta felet. Men hur ska jag fortsätta nu?

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 20:31

Hur ska jag få ut gränserna till r och vinkeln här

Smaragdalena 80504 – Avstängd
Postad: 23 nov 2019 20:35

Vilken radie har cirkeln/skärningen? Vilken höjd finns cirkeln på?

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 20:42

Den har radien 0.5 och ligger på höjden 1. Men har jag tänkt rätt? Ska jag räkna andra ytan  med samma metod men ska bara ta sfären ekvation minus konens ekvation? Samt hur får jag gränserna till vinkel?

Smaragdalena 80504 – Avstängd
Postad: 23 nov 2019 21:07
Sura98 skrev:

Den har radien 0.5 och ligger på höjden 1. Men har jag tänkt rätt? Ska jag räkna andra ytan  med samma metod men ska bara ta sfären ekvation minus konens ekvation? Samt hur får jag gränserna till vinkel?

När z=0 är vi på "nordpolen" av enhetssfären. Du måste ha räknat fel någonstans.

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 21:15

Jag förstår inte vad du menar?

Smaragdalena 80504 – Avstängd
Postad: 23 nov 2019 21:42

Skärningen kan inte ligga påhöjden z = 1. På den höjden finns bara en enda punkt som tillhör sfären, nämligen (0,0,1). På denna höjd utgörs konen av en cirkel med radien 1.

Du har fått fram att x2 + y2 = ½. Om du sätter in detta i ekvationen för enhetssfären x2+y2+z2=1 får du en ekvation som bara beror på variabeln z. Vilket (positivt) värde har z?

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 21:57

Då får jag att z=1/4 och -1/4

Sura98 49 – Fd. Medlem
Postad: 23 nov 2019 22:05

Så gränserna till r är [ 1/4 , 1/2]?

Smaragdalena 80504 – Avstängd
Postad: 24 nov 2019 09:07

 Visa hur du har räknat när du fick fram att z=0.25 så skall vi visa var du har räknar fel.

Laguna Online 30484
Postad: 24 nov 2019 09:40
Sura98 skrev:

Hej igen ju jag tror att det stod fel i uppgiften och det ska vara ruten ur eftersom nu går det att hitta cirkeln som konen skär sfären med. Tack för att du såg detta felet. Men hur ska jag fortsätta nu?

Det blir en cirkel med en paraboloid också, även om det inte var det du skulle lösa.

Sura98 49 – Fd. Medlem
Postad: 24 nov 2019 15:32

Sura98 49 – Fd. Medlem
Postad: 24 nov 2019 15:35

Såhär har jag löst uppgiften och fick gränserna för z. Men vad blir gränserna för vinkeln. Jag är jätte förvirrad eftersom jag vet inte ens om min metod fungerar för att räkna ut arean för delen som innehåller klotet minus arean för konen

Smaragdalena 80504 – Avstängd
Postad: 24 nov 2019 16:13

Visa steg för steg hur du löser ekvationen z2=12z^2=\frac{1}{2}. Det ger dig z-värdet som du behöver. Värdet är inte z=0,25.

Sura98 49 – Fd. Medlem
Postad: 24 nov 2019 16:24

Ojjj juste det blir väl (1/sqrt2)

Laguna Online 30484
Postad: 24 nov 2019 16:29
Sura98 skrev:

Såhär har jag löst uppgiften och fick gränserna för z. Men vad blir gränserna för vinkeln. Jag är jätte förvirrad eftersom jag vet inte ens om min metod fungerar för att räkna ut arean för delen som innehåller klotet minus arean för konen

Det står att du ska räkna ut areorna för de två delar som sfären delas upp i. Konens area är inte intressant. 

Sura98 49 – Fd. Medlem
Postad: 24 nov 2019 17:04

Ju det vet jag men det jag menar är att man tar klotets area minus konen det är då vi får arean som vi söker eller

Smaragdalena 80504 – Avstängd
Postad: 24 nov 2019 17:35 Redigerad: 24 nov 2019 17:43
Sura98 skrev:

Ju det vet jag men det jag menar är att man tar klotets area minus konen det är då vi får arean som vi söker eller

Laguna har rätt i att konens area är helt ointressant för den här uppgiften.Det su skall räkna ut är dels arean för "nordkalotten", dels arean för "resten av klotet". Det sistnämnda skulle jag beräkna som arean för ett klot minus arean av nordkalotten.

För att beräkna arean för "nordkalotten" kan du antingen leta upp en lämplig formel eller integrera.

Sura98 49 – Fd. Medlem
Postad: 24 nov 2019 17:42

Så jag har gjort fel i beräkningar ovan. Men i sådant fall hur ska jag ställa upp integralen?

Smaragdalena 80504 – Avstängd
Postad: 24 nov 2019 17:49

Börja med att (för hand!) rita upp klotet och den del av konen som befinner sig inuti det. Då bör du lätt kunna avgöra vilken vinkel en linje från origo till "polcirkeln" bildar mot ekvatorialplanet.

Sura98 49 – Fd. Medlem
Postad: 24 nov 2019 18:02

Men varför skulle jag då i detta fall behöva cirkeln och vilken höjd på z-axeln ligger den?

Sura98 49 – Fd. Medlem
Postad: 24 nov 2019 19:01
Smaragdalena skrev:

Börja med att (för hand!) rita upp klotet och den del av konen som befinner sig inuti det. Då bör du lätt kunna avgöra vilken vinkel en linje från origo till "polcirkeln" bildar mot ekvatorialplanet.

Jag gjorde det du sa och räknade ut vinkeln till pi/4. Och fick som slut resultat att arean blir (pi(1-sqrt2))/4. Men det känns som att jag ute och cyklar

Smaragdalena 80504 – Avstängd
Postad: 24 nov 2019 19:55

Du borde skriva i dina beräkningar vad det är du räknar ut i varje steg. Då är det lättare att följa med i dina beräkningar.

Jämför ditt värde med Wikipedias. Era formler ser olika ut, men jag tror att ni är överens.

Nu har du gjort halva uppgiften - den andra halvan är enklare.

Sura98 49 – Fd. Medlem
Postad: 27 nov 2019 09:27
Smaragdalena skrev:

Du borde skriva i dina beräkningar vad det är du räknar ut i varje steg. Då är det lättare att följa med i dina beräkningar.

Jämför ditt värde med Wikipedias. Era formler ser olika ut, men jag tror att ni är överens.

Nu har du gjort halva uppgiften - den andra halvan är enklare.

Hej det visade att det var en parabolid vi har i uppgiften så det är samma ekvationen som är givna i uppgiften. Min fråga är att hur ska jag ta ut vinkeln mellan parabloiden och cirkeln?

Laguna Online 30484
Postad: 27 nov 2019 10:25
Sura98 skrev:
Smaragdalena skrev:

Du borde skriva i dina beräkningar vad det är du räknar ut i varje steg. Då är det lättare att följa med i dina beräkningar.

Jämför ditt värde med Wikipedias. Era formler ser olika ut, men jag tror att ni är överens.

Nu har du gjort halva uppgiften - den andra halvan är enklare.

Hej det visade att det var en parabolid vi har i uppgiften så det är samma ekvationen som är givna i uppgiften. Min fråga är att hur ska jag ta ut vinkeln mellan parabloiden och cirkeln?

När du har fått fram var paraboloiden skär sfären (en cirkel på en viss höjd) så spelar paraboloiden/konen ingen roll längre.

Sura98 49 – Fd. Medlem
Postad: 27 nov 2019 11:18

Men vad ska jag göra med cirkeln som ligger i en viss höjd med en viss radie. 

 

Det är svårt att hitta radien för cirkeln då jag får att 1=(x2+y2)+(x2+y2)som blir ju en cirkel med konstig ekvation inte en ekvation som jag är vann vid

Laguna Online 30484
Postad: 27 nov 2019 11:30
Sura98 skrev:

Men vad ska jag göra med cirkeln som ligger i en viss höjd med en viss radie. 

 

Det är svårt att hitta radien för cirkeln då jag får att 1=(x2+y2)+(x2+y2)som blir ju en cirkel med konstig ekvation inte en ekvation som jag är vann vid

Som jag skrev tidigare: kalla x2+y2 för t.ex. t, så har du en andragradsekvation i t.

Sura98 49 – Fd. Medlem
Postad: 27 nov 2019 11:42

Hej igen då har jag fått att cirkeln har radien sqrt((-1+sqrt5)/2) och ligger på höjden i z led (-1+sqrt5)/2. Vad ska jag göra sen 

Sura98 49 – Fd. Medlem
Postad: 27 nov 2019 12:59
Laguna skrev:
Sura98 skrev:

Men vad ska jag göra med cirkeln som ligger i en viss höjd med en viss radie. 

 

Det är svårt att hitta radien för cirkeln då jag får att 1=(x2+y2)+(x2+y2)som blir ju en cirkel med konstig ekvation inte en ekvation som jag är vann vid

Hej igen då har jag fått att cirkeln har radien sqrt((-1+sqrt5)/2) och ligger på höjden i z led (-1+sqrt5)/2. Vad ska jag göra sen Som jag skrev tidigare: kalla x2+y2 för t.ex. t, så har du en andragradsekvation i t.

Smaragdalena 80504 – Avstängd
Postad: 27 nov 2019 14:17

Rita! Du har en triangel där du vet längden på hypotenusan och längden på båda katererna. Hur du skall göra för att ta reda på vinkeln vid origo i den trianglen lärde du dig i Ma1c alternativt Ma3.

Sura98 49 – Fd. Medlem
Postad: 27 nov 2019 14:33

Hej jag det gjorde jag och fick att cos((-1+sqrt5)/2) är första vinkeln hur får jag den andra vinkeln blir det bara samma fast med minus tecken 

Smaragdalena 80504 – Avstängd
Postad: 27 nov 2019 15:02

Vad är det för andra vinkel du vill ha fram? kan du lägga upp en bild?

Sura98 49 – Fd. Medlem
Postad: 27 nov 2019 16:28

Sura98 49 – Fd. Medlem
Postad: 27 nov 2019 16:32
Smaragdalena skrev:

Vad är det för andra vinkel du vill ha fram? kan du lägga upp en bild?

Jag tänker på att jag kommer göra en integral då vinkel har ett intervall för den lilla området att den börjar från någon vinkel tills den slutar vid någon vinkel som figuren visar. Så att jag kan göra integralen.

Smaragdalena 80504 – Avstängd
Postad: 27 nov 2019 16:41

De båda vinklarna du har markerat är lika. Du har ju rotationssymmetri!

Sura98 49 – Fd. Medlem
Postad: 27 nov 2019 17:00

Då är vinklarna den samma som jag har räcknat fast den ena ska ha minus tecken eller tänker jag fel?

Smaragdalena 80504 – Avstängd
Postad: 27 nov 2019 17:14

Du behöver bara den ena av de vinklarna.

Vad är det man frågar efter i uppgiften? Vad behöver du för att kunna beräkna detta?

Svara
Close