Nilofar1 behöver inte mer hjälp
Nilofar1 7
Postad: 14 nov 2023 13:34 Redigerad: 14 nov 2023 14:18

Hur många binära tal mindre än 256 börjar och/eller slutar med två ettor?

Jag får till 155 medan i facit står det 158. Jag har försökt många gånger men kan inte få rätt svar.

Bedinsis Online 2998
Postad: 14 nov 2023 13:51

Av de som bara består av två siffror finns det ett tal, 11två.

Av de som bara består av tre siffror finns det två tal, {110, 111}två.

Av de som bara består av fyra siffror finns det fem tal, {1100, 1101, 1110, 1111, 1011}två.

För varje längd av siffror vill det till att de antingen inleds med 11 eller att de inleds med 10 och avslutas med 11. Övriga kan vara vadsomhelst. Jag får det till:

1+2+5+(23+2)+(24+22)+(25+23)+(26+24) = 1+2+5+10+20+40+80 = 158.

Marilyn 3423
Postad: 14 nov 2023 13:58

Jag ser att Bendinsis redan svarat. Så här tänkte jag, take it or leave it.

 

256 = 28 = 1 0000 0000två

dvs alla tal mindre än 256 har högst 8 siffror i bas två.

Bara tal med åtminstone två siffror kandiderar.

 

(i) Hur många slutar på två ettor? 

xxxx xx11 där har vi 2 möjligheter (64)

 

(ii) Hur många börjar på två ettor?

Tvåsiffriga: 1

tresiffriga: 2

fyrsiffriga: 4

åttasiffriga 64

Totalt 1+2+…+64 = 128–1 = 127

 

(iii) Så längt har vi räknat ihop 127+64 men då har vi fått med dem som både börjar  och slutar på två ettor dubbelt, så dem får vi dra bort.

Tvåsiffriga 1

tresiffriga 1

fyrsiffriga 1

femsiffriga 2

sexsiffriga 4

sjusiffriga 8

åttasiffriga 16

Totalt 33

sammanlagt 127+64–33 = 158 

Nilofar1 7
Postad: 14 nov 2023 14:05

Tack för svaret (båda två) , nu förstår jag:)

Sideeg 1197 – Admin
Postad: 14 nov 2023 14:19

Kategorisering - Tråden flyttad från Alla trådar till Talföljder och bevisteknik. /admin

Svara
Close