Hur löser man dem?
Behöver hjälp med hur man löser en andragradsekvation. Förstår inte hur man löser dem för hand. Kan slå på räknaren men behöver förstå hur man löser. Arbetar just nu med -2x^2+2x+3=0. Tacksam för vägledning
Gör om så att du får X^2+px+q=0 och använd pq formeln
För en total genomgång se: matteboken.se/lektioner/matte-2/andragradsekvationer
I ditt fall: börja med att 'få bort' -2 framför x2
Du vill få ekvationen på formen x2+px+q=0
Sedan kan du använda p/q-formeln (har du hört om den?
Välkommen till Pluggakuten! Den kanske vanligaste metoden är att använda PQ-formeln. Har du hört något om den? :)
Ja, men jag förstår inte riktigt hur man fortsätter. Har kommit hit:
-x^2-2x-3=0
hur fortsätter man och varför gör man så. Tror jag behöver en pedagogisk förklaring:)
nej för att 'få bort' -2 kan du inte bara sudda. Du får dividera allt med -2 och förkorta där det går.
x2-1-1,5=0
Säg til om det är något led du inte är med på.
Jag skrev nog fel
-2x^2+4x+6
x^2+2x+3
x=-2/2+-”roten ur” (2/2)^2-3
så lång har jag kommit nu
Jag tror att jag kanske behöver vara grundligare (kanske inte för dig men andra kan ju läsa denna tråd).
Vi börjar med några grunder:
Om du har 3x2+6x+9=0 och vill 'få bort' 3:an så dividerar du med 3
Sen kan du förkorta där det går och du får:
x2+2x+3=0
Om du istället har -x2+8x-3=0 och vill 'få bort' minustecknet framför x2 kan du multiplicera allt med -1
x2-8x+3=0
Kombinera dessa metoder för att skriva om ditt exempel.
Tantan2 skrev:Jag skrev nog fel
-2x^2+4x+6
x^2+2x+3
x=-2/2+-”roten ur” (2/2)^2-3
så lång har jag kommit nu
Okej, men 4x/(-2)=-2x och 6/-2=-3
Jag tror det var så jag gjorde när jag kom fram till
x^2-2x-3=0
sen blir det problem jag får x1= 1 och X2=-3
vilket är fel
Tantan2 skrev:Jag tror det var så jag gjorde när jag kom fram till
x^2-2x-3=0
sen blir det problem jag får x1= 1 och X2=-3
vilket är fel
Du började med formeln . Om du delar alla termer med -2 får du inte den ekvation du skrev i ditt inlägg. Det är alltså fel ekvation du använder pq-formeln på.
Smaragdalena skrev:Tantan2 skrev:Jag tror det var så jag gjorde när jag kom fram till
x^2-2x-3=0
sen blir det problem jag får x1= 1 och X2=-3
vilket är fel
Du började med formeln . Om du delar alla termer med -2 får du inte den ekvation du skrev i ditt inlägg. Det är alltså fel ekvation du använder pq-formeln på.
Men jag rättade felet.
så här är det: Y=-2x^2+4x+6
får:
x^2-2x-3=0
x=-2/2+-”roten ur” (-2/2)^2-3
x1=-1 x2=-2 vilket är fel
någonstans gör jag fel. Gissar att det är rätt fram till pqformeln
Om du istället vill lösa ekvationen så behöver du börja med att dela hela ekvationen med -2, så att du får . Då är p=-2 och q=-3. Hur ser det ut när du sätter in de värdena i pq-formeln?
Smaragdalena skrev:Om du istället vill lösa ekvationen så behöver du börja med att dela hela ekvationen med -2, så att du får . Då är p=-2 och q=-3. Hur ser det ut när du sätter in de värdena i pq-formeln?
Är det inte det jag skrivit i inlägget ovanför?
Nej, du har satt in att p=2 och q=3.
Är inte x=-2/2+-roten ur (-2/2)^2-3 rätt väg?
Tantan2 skrev:Är inte x=-2/2+-roten ur (-2/2)^2-3 rätt väg?
I pq-formeln har du ett minustecken framför p/2.
Hej
min fråga var hur man löser dem. Jag bad om en pedagogisk förklaring då jag inte förstår varför. Jag har sett på exemplen men förstår inte. Ibland byter tecknet från + till - och ibland inte. Jag sätter in pq och då är det fel och nästa gång inte. Läs tråden. Har jag fått någon hjälp som hjälpt mig framåt? Jag har svaret i min mattebok och det är inte vad jag får fram. En sista vädjan: kan någon guida mig genom uträkningen. Ni som svarar sätt in i pq-formeln kan vänligen inte kommentera det mer. Min mattelärare är sjuk så jag kan inte fråga honom.
Du har använt pq-formeln fel, vilket vi har påpekat flera gånger, och du har inte brytt dig om att försöka följa de råd du har fått.
Formeln lyder : Ekvationen har lösningarna . Det är alltid ett minustecken framför p/2 och det är alltid ett minustecken framför q inuti roten.
Om du behöver mera hjälp, så visa hur du har försökt oh hur långt du har kommit och fråga igen.
Jag fick hjälp på slack istället och fick veta att jag gjort fel i och med att det blev ett imaginärt tal. Lösningen blev då
x= -(-2/2) +- ”roten ur” 1^2-(-3)
vilket blev x=3 eller x=-1 vilket visade sig vara rätt. Felet var alltså att jag inte tog - -
Det stämmer. Enligt pq-formeln så ska första termen vara .
Det betyder att om till exempel har värdet 5 så blir första termen .
Och om till exempel har värdet så blir första termen .