7 svar
1567 visningar
Grace00 34 – Fd. Medlem
Postad: 10 mar 2019 13:33

Hjälp med induktionsbevis

Hej! Jag har lite svårt för induktionsbevis... 

"Visa med ett induktionsbevis att formeln 2 + 4 + 6 + ... + 2n = n(n+1)."

Så här gjorde jag: Steg 1

Sn = n(n+1) , n= 1 ger S1 = 1(1+1) = 2  

 

Steg 2

Antag att n=p 

Sp = 2p = p(p+1) 

 

Steg 3

Visa att n = p+1 

Sp+1 = 2 + 4 + 6 + ... + p(p+1) + p((p+1) + 1) = 2p

Sp+1 = Sp + p((p+1) + 1) = 2p + p((p+1) + 1) = 2p + p(p+2) = p2 + 2p + 2p = p(p + 4)  

 

Som sagt så förstår jag inte induktionsbevis och jag har följt en induktionsbevis från youtube men det leder inte till rätt svar... vart har jag gjort fel? 

Tacksam för svar! 

AlvinB 4014
Postad: 10 mar 2019 14:10

Ditt antagande ser lite märkligt ut. Du skall ju inte anta att:

2p=p(p+1)2p=p(p+1)

utan att

2+4+...+2p=p(p+1)2+4+...+2p=p(p+1)

Sedan skall du använda detta antagande för att visa att påståendet stämmer för n=p+1n=p+1, d.v.s.

2+4+...+2p+2(p+1)=(p+1)(p+2)2+4+...+2p+2(p+1)=(p+1)(p+2)

Hänger du med på det?

Smaragdalena 80504 – Avstängd
Postad: 10 mar 2019 14:24

Har du läst om induktionsbevis i Matteboken.se?

Grace00 34 – Fd. Medlem
Postad: 10 mar 2019 15:05 Redigerad: 10 mar 2019 15:06

Förlåt, borde har skrivit ut 2 + 4 + 6 ... o.s.v 

Jag förstår inte med varför 2 + 4 +... + 2p + 2(p+1) = (p+1)(p+2), det slutade ju med 2 + 4 +...+2p varför lägger man till 2(p+1)? Och hur blev p(p+1) till (p + 1)(p + 2)? 

 

Har jag har läst men jag förstår inte :( 

AlvinB 4014
Postad: 10 mar 2019 15:13

Jag visar inte hur du får fram det, jag säger bara vad du skall bevisa. Om du på något sätt kan utgå från:

2+4+...+2p=p(p+1)2+4+...+2p=p(p+1)

och manipulera båda led och till slut komma fram till:

2+4+...+2p+2(p+1)=(p+1)(p+2)2+4+...+2p+2(p+1)=(p+1)(p+2)

så har du bevisat påståendet för n=p+1n=p+1.

Smaragdalena 80504 – Avstängd
Postad: 10 mar 2019 15:18

Induktionsantagandet är att OM det är så att blablabla gäller när n=p, så gäller blablabla även när n=p+1. Sedan är nästa steg att bevisa blablabla är sant, under förutsättning att induktionsantagandet stämmer.

Albiki 5096 – Fd. Medlem
Postad: 10 mar 2019 15:34

Låt SnS_n beteckna summan 2+4+6++2n.2+4+6+\cdots+2n.

Steg 1. Visa att S1=1·2S_1 = 1 \cdot 2.

Steg 2. Anta att Sp=p·(p+1).S_p = p\cdot (p+1).

Steg 3. Visa att Sp+1=(p+1)·(p+1+1).S_{p+1} = (p+1) \cdot (p+1+1).

Steg 4. Enligt Induktionsaxiomet är formeln Sn=n(n+1)S_n = n(n+1) sann för alla positiva heltal nn.

Grace00 34 – Fd. Medlem
Postad: 10 mar 2019 15:42 Redigerad: 10 mar 2019 15:43

Sn = 2 + 4 +...+2n = n(n+1) 

Enligt induktionsbasen --> VL = 2 och HL= 1(1+1)=2 då n=1 v.s.v 

Induktionsantagande --> n=p ger 2 + 4+...+2p = p(p+1) 

Induktionssteget --> (n=p+1) 

VLp+1= 2 + 4+...+2p + 2(p+1) = VLp + 2(p+1) 

HLp+1= p(p+1) = (p+1)((p+1)+1) = (p+1)(p+2) 

Är detta rätt? 

Svara
Close