Har svårt att begripa principen med Bevis och Bevismetoder
Hej, jag brukar inte ha svårt för att förstå matematik men av någon anledning så har jag extremt svårt för att begripa bevis och bevismetoder. Har läst igenom instruktionerna ett antal gånger och jag begriper det fortfarande inte.
Jag är inte helt vilse, jag förstår på ett ungefär. Om vi tar några uppgifter som exempel,
Ska det vara en ekvivalenspil eller en implikationspil emellan påståendena?
Om så kommer även eftersom att ett positivt tal i kvadrat blir
Om jag har förstått det rätt nu så ska man vända på påståendena och se om de stämmer i motsatt riktning också.
kommer Alltså kommer ett tal i kvadrat medföra att x > 0 nej intenödvändigtvist, kommer alltid att vara positivt men x kan vara mindre än 0 ändå.
Det var ganska begripligt men senare så kommer uppgifter som:
"Bevisa att två på varandra följande jämna tal har en produkt som är delbar med 8"
Då tänker jag att Ja det var delbart om jag nu gjorde rätt.
Det är fortfarande ganska begripligt, men sedan kommer denna: "Bevisa att är delbart med 3 för alla positiva heltal 0"
Jag kan stoppa in slumpmässiga positiva heltal här också men det känns inte riktigt som att jag gör rätt då. Hur ska man tänka för att begripa en sådan uppgift?
Om jag summerar det jag vill ha fram så vill jag förstå följande
* Varför finns bevis och bevismetoder
* Vad handlar det egentligen om? Vad är det man gör?
* Hur ska man tänka i huvudet? Det kanske är svårt att beskriva detta men jag uppskattar om du försöker.
Skulle vara väldigt tacksam om någon kunde förklara detaljerat och på ett mer lättförståeligt sätt.
Om du har tre heltal som kommer efter varandra, kommer (precis) ett av dem att vara delbart med 3. Vad får du om du kallar de tre talen n-1, n och n+1 och multiplicerar ihop dem? (Du kan ha nytta av konjugatregeln.)
smaragdalena skrev :Om du har tre heltal som kommer efter varandra, kommer (precis) ett av dem att vara delbart med 3. Vad får du om du kallar de tre talen n-1, n och n+1 och multiplicerar ihop dem? (Du kan ha nytta av konjugatregeln.)
För
"Bevisa att två på varandra följande jämna tal har en produkt som är delbar med 8"
förstår du frågan fel. När du har en klass av tal och säger "två på varandra följande" så menar du två tal som följer varandra i sekvensen man får om man listar dem i ordning.
Två på varandra följande primtal avser tillexempel två tal som står brevid varandra i sekvensen
2, 3, 5, 7, 11, 13, 17, 19, 23, ...
dvs tillexempel 11 och 13.
Två på varandra följande jämna tal avser två tal som följer på varandra i sekvensen
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, ...
dvs tillexempel 10 och 12.
Regeln är alltså att två på vanandra följande jämna tal skiljer sig med +2 inte en faktor 2 såsom du konstruerar det.
Den korrekta uppställningen vore att ta två tal och .
och är endast "på varandra följande" när k = 1 och inte i något annat fall säg när k = 3 då vi får 6 och 12 som har de jämna talen 8 och 10 mellan sig.
SeriousCephalopod skrev :För
"Bevisa att två på varandra följande jämna tal har en produkt som är delbar med 8"
förstår du frågan fel. När du har en klass av tal och säger "två på varandra följande" så menar du två tal som följer varandra i sekvensen man får om man listar dem i ordning.
Två på varandra följande primtal avser tillexempel två tal som står brevid varandra i sekvensen
2, 3, 5, 7, 11, 13, 17, 19, 23, ...
dvs tillexempel 11 och 13.
Två på varandra följande jämna tal avser två tal som följer på varandra i sekvensen
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, ...
dvs tillexempel 10 och 12.
Regeln är alltså att två på vanandra följande jämna tal skiljer sig med +2 inte en faktor 2 såsom du konstruerar det.
Den korrekta uppställningen vore att ta två tal och .
och är endast "på varandra följande" när k = 1 och inte i något annat fall säg när k = 3 då vi får 6 och 12 som har de jämna talen 8 och 10 mellan sig.
Ja just ja
Men varför är 4k^2+4k delbart med 8? Det är enklare att tänka så här. Vart fjärde tal är delbart med fyra, dvs vartannat jämnt tal är delbart med fyra. Om du tar två på varandra följande jämna tal är alltså exakt ett av dom delbart med fyra. Fortsätt nu!
Mattepaj skrev :SeriousCephalopod skrev :För
"Bevisa att två på varandra följande jämna tal har en produkt som är delbar med 8"
förstår du frågan fel. När du har en klass av tal och säger "två på varandra följande" så menar du två tal som följer varandra i sekvensen man får om man listar dem i ordning.
Två på varandra följande primtal avser tillexempel två tal som står brevid varandra i sekvensen
2, 3, 5, 7, 11, 13, 17, 19, 23, ...
dvs tillexempel 11 och 13.
Två på varandra följande jämna tal avser två tal som följer på varandra i sekvensen
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, ...
dvs tillexempel 10 och 12.
Regeln är alltså att två på vanandra följande jämna tal skiljer sig med +2 inte en faktor 2 såsom du konstruerar det.
Den korrekta uppställningen vore att ta två tal och .
och är endast "på varandra följande" när k = 1 och inte i något annat fall säg när k = 3 då vi får 6 och 12 som har de jämna talen 8 och 10 mellan sig.
Ja just ja
Hej!
Du kan skriva uttrycket
Symbolen betecknar ett positivt heltal.
Två fall kan uppstå: Talet är jämnt, eller talet är udda.
Om talet är jämnt, vad kan du då säga om produkten ?
Om talet är udda, vad kan du säga om produkten ?
Albiki
Albiki skrev :Mattepaj skrev :SeriousCephalopod skrev :För
"Bevisa att två på varandra följande jämna tal har en produkt som är delbar med 8"
förstår du frågan fel. När du har en klass av tal och säger "två på varandra följande" så menar du två tal som följer varandra i sekvensen man får om man listar dem i ordning.
Två på varandra följande primtal avser tillexempel två tal som står brevid varandra i sekvensen
2, 3, 5, 7, 11, 13, 17, 19, 23, ...
dvs tillexempel 11 och 13.
Två på varandra följande jämna tal avser två tal som följer på varandra i sekvensen
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, ...
dvs tillexempel 10 och 12.
Regeln är alltså att två på vanandra följande jämna tal skiljer sig med +2 inte en faktor 2 såsom du konstruerar det.
Den korrekta uppställningen vore att ta två tal och .
och är endast "på varandra följande" när k = 1 och inte i något annat fall säg när k = 3 då vi får 6 och 12 som har de jämna talen 8 och 10 mellan sig.
Ja just ja
Hej!
Du kan skriva uttrycket
Symbolen betecknar ett positivt heltal.
Två fall kan uppstå: Talet är jämnt, eller talet är udda.
Om talet är jämnt, vad kan du då säga om produkten ?
Om talet är udda, vad kan du säga om produkten ?
Albiki
Hej!
Jag har ingen aning om vad jag kan säga om produkten i varken det första eller det andra fallet. :( Det kanske beror på att jag har suttit med matteboken i 7 timmar streck snart och att hjärnan inte vill mer eller för att jag helt enkelt inte förstår.
Lite hjälp tack :)
Hej!
Du undrar varför bevis finns och varför bevismetoder finns.
Bevis finns för att vi ska kunna få svar på frågan Varför? om saker som har med Matematik att göra.
Påstående: Summan av två jämna heltal är ett jämnt heltal.
Varför?
Bevis: Om och är två jämna heltal så kan de skrivas och , där och är två positiva heltal. Summan Eftersom är ett positivt heltal så är ett jämnt tal.
Vilket Skulle Bevisas.
Vad är poängen med detta? Utan beviset så kan du inte vara säker på att påståendet är sant. Du kan kontrollera att det verkar vara sant genom att undersöka enskilda fall, men utan beviset så kan du inte vara säker på att påståendet är sant för alla jämna heltal. En mycket viktig detalj i beviset är att jag har inte talat om exakt vilka talen och är, bara att de är jämna tal. På grund av detta är beviset giltigt för vilka jämna tal och som helst.
Albiki