8 svar
131 visningar
MrIG behöver inte mer hjälp
MrIG 28
Postad: 12 nov 2022 14:48

Gränsväden

Hej, jag har svårt med denna uppgift:

 

Gränsvärden då x

Skissera grafen till funktionen f och ange lim x-> f(x) då

 

f(x)=1x2

 

Jag fick fel svar, tror jag är osäker på hur man ska tänka?  Tack på förhand! 

naytte 5023 – Moderator
Postad: 12 nov 2022 15:13

Fick du fel svar på gränsvärdet eller på skissen?

MrIG 28
Postad: 12 nov 2022 15:31
naytte skrev:

Fick du fel svar på gränsvärdet eller på skissen?

Jag trodde jag skulle göra såhär för att få fram gränsvärdet och sedan skissa:

 

f(x)=1·x-2f'(x) =x-3och får fram fel skiss

naytte 5023 – Moderator
Postad: 12 nov 2022 15:39 Redigerad: 12 nov 2022 15:40

Du behöver inte gränsvärdet för att skissa grafen. Gränsvärdet är det som är enklast här så vi kan ju börja med det.

Vad sker när x? Du har ju 1 delat på något som blir större och större. Då blir ju funktionsvärdet mindre och mindre, dvs:

limxf(x)=0. Hänger du med?

För grafen sedan kan du tänka på hur grafen till 1x ser ut. För alla x>0 kommer grafen se ungefär likadan ut, men det är för alla x<0 som det blir intressant. Eftersom att vi har en kvadrat i nämnaren kommer alla utvärden bli positiva, dvs. y-värdet för ett x<0 blir samma som för "samma" x>0. Den vänstra delen av grafen blir en spegling av den högra.

MrIG 28
Postad: 12 nov 2022 16:26
naytte skrev:

Du behöver inte gränsvärdet för att skissa grafen. Gränsvärdet är det som är enklast här så vi kan ju börja med det.

Vad sker när x? Du har ju 1 delat på något som blir större och större. Då blir ju funktionsvärdet mindre och mindre, dvs:

limxf(x)=0. Hänger du med?

För grafen sedan kan du tänka på hur grafen till 1x ser ut. För alla x>0 kommer grafen se ungefär likadan ut, men det är för alla x<0 som det blir intressant. Eftersom att vi har en kvadrat i nämnaren kommer alla utvärden bli positiva, dvs. y-värdet för ett x<0 blir samma som för "samma" x>0. Den vänstra delen av grafen blir en spegling av den högra.

Jag tror jag förstår. Vad händer om funktionsvärdet blir större då?  

naytte 5023 – Moderator
Postad: 12 nov 2022 16:30

Jag förstår inte riktigt frågan. När vi tar gränsvärdet när x så blir funktionsvärdet endast mindre och mindre. Om du hade tagit exempelvis lim x0f(x) istället hade funktionsvärdet istället blivit större och större.

MrIG 28
Postad: 12 nov 2022 22:48
naytte skrev:

Jag förstår inte riktigt frågan. När vi tar gränsvärdet när x så blir funktionsvärdet endast mindre och mindre. Om du hade tagit exempelvis lim x0f(x) istället hade funktionsvärdet istället blivit större och större.

Jag tror att jag börjar förstå det nu. Så med andra ord, när xså går f(x) mot 0. Så alla funktioner man får, oavsett hur de ser ut så vill de gå så nära 0 som möjligt för x→∞. Tänker jag rätt då?

naytte 5023 – Moderator
Postad: 13 nov 2022 11:46

Nej, inte riktigt. Det gäller inte för alla funktioner. Exempelvis gäller det inte för y=21/x. Här är limx y=1.

I just vårt fall med f(x)=1x2 råkade det vara så. Men det beror helt på hur funktionen ser ut.

Fermatrix 7841 – Fd. Medlem
Postad: 13 nov 2022 12:07 Redigerad: 13 nov 2022 12:07

Det blir tydligare när du skissat grafen. Jag tycker uppgiften har blivit löst i helt fel ordning. Vilket naytte nämnde i inlägg #4

naytte skrev:

Du behöver inte gränsvärdet för att skissa grafen. 

Första steget är att ta fram eventuella extrempunkter och asymptoter. Om du hade tagit fram asymptoterna så hade du direkt sett vad som händer när x0x \rightarrow 0 från båda sidorna, samt då x±x \rightarrow \pm \infty

https://www.desmos.com/calculator/v9iruotftb

Svara
Close